Library Ssreflect.finset
Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice fintype.
Require Import finfun bigops.
Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.
Section SetType.
Variable T : finType.
Inductive set_type : predArgType := FinSet of {ffun pred T}.
Definition finfun_of_set A := let: FinSet f := A in f.
Definition set_of of phant T := set_type.
Identity Coercion type_of_set_of : set_of >-> set_type.
Canonical Structure set_subType :=
Eval hnf in [newType for finfun_of_set by set_type_rect].
Definition set_eqMixin := Eval hnf in [eqMixin of set_type by <:].
Canonical Structure set_eqType := Eval hnf in EqType set_eqMixin.
Definition set_choiceMixin := [choiceMixin of set_type by <:].
Canonical Structure set_choiceType := Eval hnf in ChoiceType set_choiceMixin.
Definition set_countMixin := [countMixin of set_type by <:].
Canonical Structure set_countType := Eval hnf in CountType set_countMixin.
Canonical Structure set_subCountType := Eval hnf in [subCountType of set_type].
Definition set_finMixin := [finMixin of set_type by <:].
Canonical Structure set_finType := Eval hnf in FinType set_finMixin.
Canonical Structure set_subFinType := Eval hnf in [subFinType of set_type].
End SetType.
Delimit Scope set_scope with SET.
Bind Scope set_scope with set_type.
Bind Scope set_scope with set_of.
Open Scope set_scope.
Arguments Scope finfun_of_set [_ set_scope].
Notation "{ 'set' T }" := (set_of (Phant T))
(at level 0, format "{ 'set' T }") : type_scope.
Notation "A :=: B" := (A = B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation "A :<>: B" := (A <> B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation "A :==: B" := (A == B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation "A :!=: B" := (A != B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation "A :=P: B" := (A =P B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation Local finset_def := (fun T P => @FinSet T (finfun P)).
Notation Local pred_of_set_def := (fun T (A : set_type T) => val A : _ -> _).
Module Type SetDefSig.
Parameter finset : forall T : finType, pred T -> {set T}.
Parameter pred_of_set : forall T, set_type T -> pred_sort (predPredType T).
Coercion pred_of_set : set_type >-> pred_class.
Axiom finsetE : finset = finset_def.
Axiom pred_of_setE : pred_of_set = pred_of_set_def.
End SetDefSig.
Module SetDef : SetDefSig.
Definition finset := finset_def.
Definition pred_of_set := pred_of_set_def.
Lemma finsetE : finset = finset_def. Proof. by []. Qed.
Lemma pred_of_setE : pred_of_set = pred_of_set_def. Proof. by []. Qed.
End SetDef.
Notation finset := SetDef.finset.
Notation pred_of_set := SetDef.pred_of_set.
Canonical Structure finset_unlock := Unlockable SetDef.finsetE.
Canonical Structure pred_of_set_unlock := Unlockable SetDef.pred_of_setE.
Notation "[ 'set' x : T | P ]" := (finset (fun x : T => P))
(at level 0, x at level 69, only parsing) : set_scope.
Notation "[ 'set' x | P ]" := [set x : _ | P]
(at level 0, x at level 69, format "[ 'set' x | P ]") : set_scope.
Notation "[ 'set' x \in A | P ]" := [set x | (x \in A) && P]
(at level 0, x at level 69, format "[ 'set' x \in A | P ]") : set_scope.
Notation "[ 'set' x \in A ]" := [set x | x \in A]
(at level 0, x at level 69, format "[ 'set' x \in A ]") : set_scope.
Require Import finfun bigops.
Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.
Section SetType.
Variable T : finType.
Inductive set_type : predArgType := FinSet of {ffun pred T}.
Definition finfun_of_set A := let: FinSet f := A in f.
Definition set_of of phant T := set_type.
Identity Coercion type_of_set_of : set_of >-> set_type.
Canonical Structure set_subType :=
Eval hnf in [newType for finfun_of_set by set_type_rect].
Definition set_eqMixin := Eval hnf in [eqMixin of set_type by <:].
Canonical Structure set_eqType := Eval hnf in EqType set_eqMixin.
Definition set_choiceMixin := [choiceMixin of set_type by <:].
Canonical Structure set_choiceType := Eval hnf in ChoiceType set_choiceMixin.
Definition set_countMixin := [countMixin of set_type by <:].
Canonical Structure set_countType := Eval hnf in CountType set_countMixin.
Canonical Structure set_subCountType := Eval hnf in [subCountType of set_type].
Definition set_finMixin := [finMixin of set_type by <:].
Canonical Structure set_finType := Eval hnf in FinType set_finMixin.
Canonical Structure set_subFinType := Eval hnf in [subFinType of set_type].
End SetType.
Delimit Scope set_scope with SET.
Bind Scope set_scope with set_type.
Bind Scope set_scope with set_of.
Open Scope set_scope.
Arguments Scope finfun_of_set [_ set_scope].
Notation "{ 'set' T }" := (set_of (Phant T))
(at level 0, format "{ 'set' T }") : type_scope.
Notation "A :=: B" := (A = B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation "A :<>: B" := (A <> B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation "A :==: B" := (A == B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation "A :!=: B" := (A != B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation "A :=P: B" := (A =P B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation Local finset_def := (fun T P => @FinSet T (finfun P)).
Notation Local pred_of_set_def := (fun T (A : set_type T) => val A : _ -> _).
Module Type SetDefSig.
Parameter finset : forall T : finType, pred T -> {set T}.
Parameter pred_of_set : forall T, set_type T -> pred_sort (predPredType T).
Coercion pred_of_set : set_type >-> pred_class.
Axiom finsetE : finset = finset_def.
Axiom pred_of_setE : pred_of_set = pred_of_set_def.
End SetDefSig.
Module SetDef : SetDefSig.
Definition finset := finset_def.
Definition pred_of_set := pred_of_set_def.
Lemma finsetE : finset = finset_def. Proof. by []. Qed.
Lemma pred_of_setE : pred_of_set = pred_of_set_def. Proof. by []. Qed.
End SetDef.
Notation finset := SetDef.finset.
Notation pred_of_set := SetDef.pred_of_set.
Canonical Structure finset_unlock := Unlockable SetDef.finsetE.
Canonical Structure pred_of_set_unlock := Unlockable SetDef.pred_of_setE.
Notation "[ 'set' x : T | P ]" := (finset (fun x : T => P))
(at level 0, x at level 69, only parsing) : set_scope.
Notation "[ 'set' x | P ]" := [set x : _ | P]
(at level 0, x at level 69, format "[ 'set' x | P ]") : set_scope.
Notation "[ 'set' x \in A | P ]" := [set x | (x \in A) && P]
(at level 0, x at level 69, format "[ 'set' x \in A | P ]") : set_scope.
Notation "[ 'set' x \in A ]" := [set x | x \in A]
(at level 0, x at level 69, format "[ 'set' x \in A ]") : set_scope.
Begin outcomment
Notation "A :<=: B" := (pred_of_set A \subset pred_of_set B)
(at level 70, B at next level, no associativity) : subset_scope.
Notation "A :<: B" := (pred_of_set A \proper pred_of_set B)
(at level 70, B at next level, no associativity) : subset_scope.
Open Scope subset_scope.
Notation "A :<=: B :<=: C" := ((A :<=: B) && (B :<=: C))
(at level 70, B at next level, no associativity) : subset_scope.
Notation "A :<: B :<=: C" := ((A :<: B) && (B :<=: C))
(at level 70, B at next level, no associativity) : subset_scope.
Notation "A :<=: B :<: C" := ((A :<=: B) && (B :<: C))
(at level 70, B at next level, no associativity) : subset_scope.
Notation "A :<: B :<: C" := ((A :<: B) && (B :<: C))
(at level 70, B at next level, no associativity) : subset_scope.
End outcomment
Canonical Structure set_predType T :=
Eval hnf in @mkPredType _ (let s := set_type T in s) (@pred_of_set T).
Section BasicSetTheory.
Variable T : finType.
Implicit Type x : T.
Canonical Structure set_of_subType := Eval hnf in [subType of {set T}].
Canonical Structure set_of_eqType := Eval hnf in [eqType of {set T}].
Canonical Structure set_of_choiceType := Eval hnf in [choiceType of {set T}].
Canonical Structure set_of_countType := Eval hnf in [countType of {set T}].
Canonical Structure set_of_subCountType :=
Eval hnf in [subCountType of {set T}].
Canonical Structure set_of_finType := Eval hnf in [finType of {set T}].
Canonical Structure set_of_subFinType := Eval hnf in [subFinType of {set T}].
Lemma in_set : forall P x, x \in finset P = P x.
Proof. by move=> P x; rewrite [@finset _]unlock unlock [x \in _]ffunE. Qed.
Lemma setP : forall A B : {set T}, A =i B <-> A = B.
Proof.
move=> A B; split=> [eqAB|-> //]; apply: val_inj; apply/ffunP=> x.
by have:= eqAB x; rewrite unlock.
Qed.
Definition set0 := [set x : T | false].
Definition setT := [set x : T | true].
Lemma in_setT : forall x, x \in setT. Proof. by move=> x; rewrite in_set. Qed.
Lemma eqsVneq : forall A B : {set T}, {A = B} + {A != B}.
Proof. exact: eqVneq. Qed.
End BasicSetTheory.
Definition inE := (in_set, inE).
Implicit Arguments set0 [T].
Implicit Arguments setT [T].
Prenex Implicits set0 setT.
Hint Resolve in_setT.
Section setOpsDefs.
Variable T : finType.
Implicit Types a x : T.
Implicit Types A B D : {set T}.
Implicit Types P : {set {set T}}.
Definition set1 a := [set x | x == a].
Definition setU A B := [set x | (x \in A) || (x \in B)].
Definition setI A B := [set x | (x \in A) && (x \in B)].
Definition setC A := [set x | x \notin A].
Definition setD A B := [set x | (x \notin B) && (x \in A)].
Definition ssetI P D := [set A \in P | A \subset D].
End setOpsDefs.
Notation "[ 'set' a ]" := (set1 a)
(at level 0, a at level 69, format "[ 'set' a ]") : set_scope.
Notation "A :|: B" := (setU A B) (at level 52, left associativity) : set_scope.
Notation "a |: A" := ([set a] :|: A)
(at level 52, left associativity) : set_scope.
Notation "[ 'set' a1 ; a2 ; .. ; an ]" :=
(setU .. (a1 |: [set a2]) .. [set an])
(at level 0, a1, a2, an at level 69,
format "[ 'set' a1 ; a2 ; .. ; an ]") : set_scope.
Notation "A :&: B" := (setI A B) (at level 48, left associativity) : set_scope.
Notation "~: A" := (setC A) (at level 35, right associativity) : set_scope.
Notation "[ 'set' ~ a ]" := (~: [set a])
(at level 0, a at level 69, format "[ 'set' ~ a ]") : set_scope.
Notation "A :\: B" := (setD A B) (at level 50) : set_scope.
Notation "A :\ a" := (A :\: [set a]) (at level 50) : set_scope.
Notation "P ::&: D" := (ssetI P D) (at level 48) : set_scope.
Section setOps.
Variable T : finType.
Implicit Types a x : T.
Implicit Types A B C D : {set T}.
Lemma eqEsubset : forall A B, (A == B) = (A \subset B) && (B \subset A).
Proof. by move=> A B; apply/eqP/subset_eqP; move/setP. Qed.
Lemma subEproper : forall A B, A \subset B = (A == B) || (A \proper B).
Proof. by move=> A B; rewrite eqEsubset -andb_orr orbN andbT. Qed.
Lemma properEneq : forall A B, A \proper B = (A != B) && (A \subset B).
Proof. by move=> A B; rewrite andbC eqEsubset negb_and andb_orr andbN. Qed.
Lemma eqEproper : forall A B, (A == B) = (A \subset B) && ~~ (A \proper B).
Proof. by move=> A B; rewrite negb_and negbK andb_orr andbN eqEsubset. Qed.
Lemma eqEcard : forall A B, (A == B) = (A \subset B) && (#|B| <= #|A|).
Proof.
move=> A B; rewrite eqEsubset; case sAB: (A \subset B) => //=.
by rewrite -(subset_leqif_card sAB) eqn_leq (subset_leqif_card sAB).
Qed.
Lemma properEcard : forall A B, (A \proper B) = (A \subset B) && (#|A| < #|B|).
Proof.
by move=> A B; rewrite properEneq ltnNge eqEcard andbC; case: (A \subset B).
Qed.
Lemma proper_neq : forall A B, A \proper B -> A != B.
Proof. by move=> A B; rewrite properEneq; case/andP. Qed.
Lemma in_set0 : forall x, x \in set0 = false.
Proof. by move=> x; rewrite inE. Qed.
Lemma sub0set : forall A, set0 \subset A.
Proof. by move=> A; apply/subsetP=> x; rewrite inE. Qed.
Lemma subset0 : forall A, (A \subset set0) = (A == set0).
Proof. by move=> A; rewrite eqEsubset sub0set andbT. Qed.
Lemma proper0 : forall A, (set0 \proper A) = (A != set0).
Proof. by move=> A; rewrite properE sub0set subset0. Qed.
Lemma set_0Vmem : forall A, (A = set0) + {x : T | x \in A}.
Proof.
move=> A; case: (pickP (mem A)) => [x Ax | A0]; [by right; exists x | left].
apply/setP=> x; rewrite inE; exact: A0.
Qed.
Lemma subsetT : forall A, A \subset setT.
Proof. by move=> A; apply/subsetP=> x; rewrite inE. Qed.
Lemma subTset : forall A, (setT \subset A) = (A == setT).
Proof. by move=> A; rewrite eqEsubset subsetT. Qed.
Lemma set1P : forall x a, reflect (x = a) (x \in [set a]).
Proof. move=> x a; rewrite inE; exact: eqP. Qed.
Lemma in_set1 : forall x a, (x \in [set a]) = (x == a).
Proof. move=> x a; exact: in_set. Qed.
Lemma set11 : forall x, x \in [set x].
Proof. by move=> x; rewrite inE. Qed.
Lemma setU1P : forall x a B, reflect (x = a \/ x \in B) (x \in a |: B).
Proof. move=> x a B; rewrite !inE; exact: predU1P. Qed.
Lemma in_setU1 : forall x a B, (x \in a |: B) = (x == a) || (x \in B).
Proof. by move=> x a B; rewrite !inE. Qed.
Lemma set_cons : forall a s, [set x \in a :: s] = a |: [set x \in s].
Proof. by move=> a s; apply/setP=> x; rewrite !inE. Qed.
Lemma setU11 : forall x B, x \in x |: B.
Proof. by move=> *; rewrite !inE eqxx. Qed.
Lemma setU1r : forall x a B, x \in B -> x \in a |: B.
Proof. by move=> x B a Bx; rewrite !inE predU1r. Qed.
Lemma set1Ul : forall x A b, x \in A -> x \in A :|: [set b].
Proof. by move=> x A b Ax; rewrite !inE Ax. Qed.
Lemma set1Ur : forall A b, b \in A :|: [set b].
Proof. by move=> A b; rewrite !inE eqxx orbT. Qed.
Lemma in_setC1 : forall x a, (x \in [set~ a]) = (x != a).
Proof. by move=> x a; rewrite !inE. Qed.
Lemma setC11 : forall x, (x \in [set~ x]) = false.
Proof. by move=> x; rewrite !inE eqxx. Qed.
Lemma setD1P : forall x A b, reflect (x != b /\ x \in A) (x \in A :\ b).
Proof. move=> x A b; rewrite !inE; exact: andP. Qed.
Lemma in_setD1 : forall x A b, (x \in A :\ b) = (x != b) && (x \in A) .
Proof. by move=> x A b; rewrite !inE. Qed.
Lemma setD11 : forall b A, (b \in A :\ b) = false.
Proof. by move=> b A; rewrite !inE eqxx. Qed.
Lemma setD1K : forall a A, a \in A -> a |: (A :\ a) = A.
Proof. by move=> *; apply/setP=> x; rewrite !inE; case: eqP => // ->. Qed.
Lemma setU1K : forall a B, a \notin B -> (a |: B) :\ a = B.
Proof.
move=> a B; move/negPf=> nBa; apply/setP=> x.
by rewrite !inE; case: eqP => // ->.
Qed.
Lemma set2P : forall x a b, reflect (x = a \/ x = b) (x \in [set a; b]).
Proof. move=> x a b; rewrite !inE; exact: pred2P. Qed.
Lemma in_set2 : forall x a b, (x \in [set a; b]) = (x == a) || (x == b).
Proof. by move=> x a b; rewrite !inE. Qed.
Lemma set21 : forall a b, a \in [set a; b].
Proof. by move=> *; rewrite !inE eqxx. Qed.
Lemma set22 : forall a b, b \in [set a; b].
Proof. by move=> *; rewrite !inE eqxx orbT. Qed.
Lemma setUP : forall x A B, reflect (x \in A \/ x \in B) (x \in A :|: B).
Proof. move => x A B; rewrite !inE; exact: orP. Qed.
Lemma in_setU : forall x A B, (x \in A :|: B) = (x \in A) || (x \in B).
Proof. move => x A B; exact: in_set. Qed.
Lemma setUC : forall A B, A :|: B = B :|: A.
Proof. by move=> A B; apply/setP => x; rewrite !inE orbC. Qed.
Lemma setUS : forall A B C, A \subset B -> C :|: A \subset C :|: B.
Proof.
move=> A B C sAB; apply/subsetP=> x; rewrite !inE.
by case: (x \in C) => //; exact: (subsetP sAB).
Qed.
Lemma setSU : forall A B C, A \subset B -> A :|: C \subset B :|: C.
Proof. by move=> A B C sAB; rewrite -!(setUC C) setUS. Qed.
Lemma setUSS : forall A B C D,
A \subset C -> B \subset D -> A :|: B \subset C :|: D.
Proof. move=> *; exact: subset_trans (setUS _ _) (setSU _ _). Qed.
Lemma set0U : forall A, set0 :|: A = A.
Proof. by move=> A; apply/setP => x; rewrite !inE orFb. Qed.
Lemma setU0 : forall A, A :|: set0 = A.
Proof. by move=> A; rewrite setUC set0U. Qed.
Lemma setUA : forall A B C, A :|: (B :|: C) = A :|: B :|: C.
Proof. by move=> A B C; apply/setP => x; rewrite !inE orbA. Qed.
Lemma setUCA : forall A B C, A :|: (B :|: C) = B :|: (A :|: C).
Proof. by move=> A B C; rewrite !setUA (setUC B). Qed.
Lemma setUAC : forall A B C, A :|: B :|: C = A :|: C :|: B.
Proof. by move=> A B C; rewrite -!setUA (setUC B). Qed.
Lemma setTU : forall A, setT :|: A = setT.
Proof. by move=> A; apply/setP => x; rewrite !inE orTb. Qed.
Lemma setUT : forall A, A :|: setT = setT.
Proof. by move=> A; rewrite setUC setTU. Qed.
Lemma setUid : forall A, A :|: A = A.
Proof. by move=> A; apply/setP=> x; rewrite inE orbb. Qed.
Lemma setUUl : forall A B C, A :|: B :|: C = (A :|: C) :|: (B :|: C).
Proof. by move=> A B C; rewrite setUA !(setUAC _ C) -(setUA _ C) setUid. Qed.
Lemma setUUr : forall A B C, A :|: (B :|: C) = (A :|: B) :|: (A :|: C).
Proof. by move=> A B C; rewrite !(setUC A) setUUl. Qed.
Lemma setIdP : forall x (pA pB : pred T),
reflect (pA x /\ pB x) (x \in [set y | pA y && pB y]).
Proof. move=> x pA pB; rewrite !inE; exact: andP. Qed.
Lemma setIP : forall x A B,
reflect (x \in A /\ x \in B) (x \in A :&: B).
Proof. move=> x A B; exact: (iffP (@setIdP _ _ _)). Qed.
Lemma in_setI : forall x A B, (x \in A :&: B) = (x \in A) && (x \in B).
Proof. move => x A B; exact: in_set. Qed.
Lemma setIC : forall A B, A :&: B = B :&: A.
Proof. by move=> A B; apply/setP => x; rewrite !inE andbC. Qed.
Lemma setIS : forall A B C, A \subset B -> C :&: A \subset C :&: B.
Proof.
move=> A B C sAB; apply/subsetP=> x; rewrite !inE.
by case: (x \in C) => //; exact: (subsetP sAB).
Qed.
Lemma setSI : forall A B C, A \subset B -> A :&: C \subset B :&: C.
Proof. by move=> A B C sAB; rewrite -!(setIC C) setIS. Qed.
Lemma setISS : forall A B C D,
A \subset C -> B \subset D -> A :&: B \subset C :&: D.
Proof. move=> *; exact: subset_trans (setIS _ _) (setSI _ _). Qed.
Lemma setTI : forall A, setT :&: A = A.
Proof. by move=> A; apply/setP => x; rewrite !inE andTb. Qed.
Lemma setIT : forall A, A :&: setT = A.
Proof. by move=> A; rewrite setIC setTI. Qed.
Lemma set0I : forall A, set0 :&: A = set0.
Proof. by move=> A; apply/setP => x; rewrite !inE andFb. Qed.
Lemma setI0 : forall A, A :&: set0 = set0.
Proof. by move=> A; rewrite setIC set0I. Qed.
Lemma setIA : forall A B C, A :&: (B :&: C) = A :&: B :&: C.
Proof. by move=> A B C; apply/setP=> x; rewrite !inE andbA. Qed.
Lemma setICA : forall A B C, A :&: (B :&: C) = B :&: (A :&: C).
Proof. by move=> A B C; rewrite !setIA (setIC A). Qed.
Lemma setIAC : forall A B C, A :&: B :&: C = A :&: C :&: B.
Proof. by move=> A B C; rewrite -!setIA (setIC B). Qed.
Lemma setIid : forall A, A :&: A = A.
Proof. by move=> A; apply/setP=> x; rewrite inE andbb. Qed.
Lemma setIIl : forall A B C, A :&: B :&: C = (A :&: C) :&: (B :&: C).
Proof. by move=> A B C; rewrite setIA !(setIAC _ C) -(setIA _ C) setIid. Qed.
Lemma setIIr : forall A B C, A :&: (B :&: C) = (A :&: B) :&: (A :&: C).
Proof. by move=> A B C; rewrite !(setIC A) setIIl. Qed.
Lemma setIUr : forall A B C, A :&: (B :|: C) = (A :&: B) :|: (A :&: C).
Proof. by move=> A B C; apply/setP => x; rewrite !inE andb_orr. Qed.
Lemma setIUl : forall A B C, (A :|: B) :&: C = (A :&: C) :|: (B :&: C).
Proof. by move=> A B C; apply/setP => x; rewrite !inE andb_orl. Qed.
Lemma setUIr : forall A B C, A :|: (B :&: C) = (A :|: B) :&: (A :|: C).
Proof. by move=> A B C; apply/setP => x; rewrite !inE orb_andr. Qed.
Lemma setUIl : forall A B C, (A :&: B) :|: C = (A :|: C) :&: (B :|: C).
Proof. by move=> A B C; apply/setP => x; rewrite !inE orb_andl. Qed.
Lemma setUK : forall A B, (A :|: B) :&: A = A.
Proof. by move=> A B; apply/setP=> x; rewrite !inE orbK. Qed.
Lemma setKU : forall A B, A :&: (B :|: A) = A.
Proof. by move=> A B; apply/setP=> x; rewrite !inE orKb. Qed.
Lemma setIK : forall A B, (A :&: B) :|: A = A.
Proof. by move=> A B; apply/setP=> x; rewrite !inE andbK. Qed.
Lemma setKI : forall A B, A :|: (B :&: A) = A.
Proof. by move=> A B; apply/setP=> x; rewrite !inE andKb. Qed.
Lemma setCP : forall x A, reflect (~ x \in A) (x \in ~: A).
Proof. move => x A; rewrite !inE; exact: negP. Qed.
Lemma in_setC : forall x A, (x \in ~: A) = (x \notin A).
Proof. move => x A; exact: in_set. Qed.
Lemma setCK : involutive (@setC T).
Proof. by move=> A; apply/setP => x; rewrite !inE negbK. Qed.
Lemma setC_inj: injective (@setC T).
Proof. exact: can_inj setCK. Qed.
Lemma subsets_disjoint : forall A B, (A \subset B) = [disjoint A & ~: B].
Proof.
move=> A B; rewrite subset_disjoint.
by apply: eq_disjoint_r => x; rewrite !inE.
Qed.
Lemma disjoints_subset : forall A B, [disjoint A & B] = (A \subset ~: B).
Proof. by move=> A B; rewrite subsets_disjoint setCK. Qed.
Lemma setCS : forall A B, (~: A \subset ~: B) = (B \subset A).
Proof. by move=> A B; rewrite !subsets_disjoint setCK disjoint_sym. Qed.
Lemma setCU : forall A B, ~: (A :|: B) = ~: A :&: ~: B.
Proof. by move=> A B; apply/setP => x; rewrite !inE -negb_or. Qed.
Lemma setCI : forall A B, ~: (A :&: B) = ~: A :|: ~: B.
Proof. by move=> A B; apply/setP => x; rewrite !inE negb_and. Qed.
Lemma setUCr : forall A, A :|: (~: A) = setT.
Proof. by move=> A; apply/setP => x; rewrite !inE orbN. Qed.
Lemma setICr : forall A, A :&: (~: A) = set0.
Proof. by move=> A; apply/setP => x; rewrite !inE andbN. Qed.
Lemma setC0 : ~: set0 = setT :> {set T}.
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma setCT : ~: setT = set0 :> {set T}.
Proof. by rewrite -setC0 setCK. Qed.
Lemma setDP : forall A B x, reflect (x \in A /\ x \notin B) (x \in A :\: B).
Proof. by move=> A B x; rewrite inE andbC; exact: andP. Qed.
Lemma in_setD : forall A B x, (x \in A :\: B) = (x \notin B) && (x \in A).
Proof. by move=> A B x; exact: in_set. Qed.
Lemma setDE : forall A B, A :\: B = A :&: ~: B.
Proof. by move=> A B; apply/setP => x; rewrite !inE andbC. Qed.
Lemma setSD : forall A B C, A \subset B -> A :\: C \subset B :\: C.
Proof. by move=> A B C; rewrite !setDE; exact: setSI. Qed.
Lemma setDS : forall A B C, A \subset B -> C :\: B \subset C :\: A.
Proof. by move=> A B C; rewrite !setDE -setCS; exact: setIS. Qed.
Lemma setDSS : forall A B C D,
A \subset C -> D \subset B -> A :\: B \subset C :\: D.
Proof. move=> *; exact: subset_trans (setDS _ _) (setSD _ _). Qed.
Lemma setD0 : forall A, A :\: set0 = A.
Proof. by move=> A; apply/setP=> x; rewrite !inE. Qed.
Lemma set0D : forall A, set0 :\: A = set0.
Proof. by move=> A; apply/setP=> x; rewrite !inE andbF. Qed.
Lemma setDT : forall A, A :\: setT = set0.
Proof. by move=> A; apply/setP=> x; rewrite !inE. Qed.
Lemma setTD : forall A, setT :\: A = ~: A.
Proof. by move=> A; apply/setP=> x; rewrite !inE andbT. Qed.
Lemma setDv : forall A, A :\: A = set0.
Proof. by move=> A; apply/setP=> x; rewrite !inE andNb. Qed.
Lemma setCD : forall A B, ~: (A :\: B) = ~: A :|: B.
Proof. by move=> A B; rewrite !setDE setCI setCK. Qed.
Lemma setDUl : forall A B C, (A :|: B) :\: C = (A :\: C) :|: (B :\: C).
Proof. by move=> A B C; rewrite !setDE setIUl. Qed.
Lemma setDUr : forall A B C, A :\: (B :|: C) = (A :\: B) :&: (A :\: C).
Proof. by move=> A B C; rewrite !setDE setCU setIIr. Qed.
Lemma setDIl : forall A B C, (A :&: B) :\: C = (A :\: C) :&: (B :\: C).
Proof. by move=> A B C; rewrite !setDE setIIl. Qed.
Lemma setDIr : forall A B C, A :\: (B :&: C) = (A :\: B) :|: (A :\: C).
Proof. by move=> A B C; rewrite !setDE setCI setIUr. Qed.
Lemma setDDl : forall A B C, (A :\: B) :\: C = A :\: (B :|: C).
Proof. by move=> A B C; rewrite !setDE setCU setIA. Qed.
Lemma setDDr : forall A B C, A :\: (B :\: C) = (A :\: B) :|: (A :&: C).
Proof. by move=> A B C; rewrite !setDE setCI setIUr setCK. Qed.
Lemma cardsE : forall P : pred T, #|[set x \in P]| = #|P|.
Proof. by move=> P; apply: eq_card => x; rewrite inE. Qed.
Lemma sum1dep_card : forall P : pred T, \sum_(x | P x) 1 = #|[set x | P x]|.
Proof. by move=> P; rewrite sum1_card cardsE. Qed.
Lemma sum_nat_dep_const : forall (P : pred T) n,
\sum_(x | P x) n = #|[set x | P x]| * n.
Proof. by move=> P n; rewrite sum_nat_const cardsE. Qed.
Lemma cards0 : #|@set0 T| = 0.
Proof. by rewrite cardsE card0. Qed.
Lemma cards_eq0 : forall A, (#|A| == 0) = (A == set0).
Proof. by move=> A; rewrite (eq_sym A) eqEcard sub0set cards0 leqn0. Qed.
Lemma set0Pn : forall A, reflect (exists x, x \in A) (A != set0).
Proof. move=> A; rewrite -cards_eq0; exact: existsP. Qed.
Lemma card_gt0 : forall A, (0 < #|A|) = (A != set0).
Proof. by move=> A; rewrite lt0n cards_eq0. Qed.
Lemma cards0_eq : forall A, #|A| = 0 -> A = set0.
Proof. by move=> A A_0; apply/setP=> x; rewrite inE (card0_eq A_0). Qed.
Lemma cards1 : forall x, #|[set x]| = 1.
Proof. by move=> x; rewrite cardsE card1. Qed.
Lemma cardsUI : forall A B, #|A :|: B| + #|A :&: B| = #|A| + #|B|.
Proof. by move=> A B; rewrite !cardsE cardUI. Qed.
Lemma cardsT : #|@setT T| = #|T|.
Proof. by rewrite cardsE. Qed.
Lemma cardsID : forall B A, #|A :&: B| + #|A :\: B| = #|A|.
Proof. by move=> B A; rewrite !cardsE cardID. Qed.
Lemma cardsC : forall A, #|A| + #|~: A| = #|T|.
Proof. by move=> A; rewrite cardsE cardC. Qed.
Lemma cardsCs : forall A, #|A| = #|T| - #|~: A|.
Proof. by move=> A; rewrite -(cardsC A) addnK. Qed.
Lemma cardsU1 : forall a A, #|a |: A| = (a \notin A) + #|A|.
Proof. by move=> a A; rewrite -cardU1; apply: eq_card=> x; rewrite !inE. Qed.
Lemma cards2 : forall a b, #|[set a; b]| = (a != b).+1.
Proof. by move=> a b; rewrite -card2; apply: eq_card=> x; rewrite !inE. Qed.
Lemma cardsC1 : forall a, #|[set~ a]| = #|T|.-1.
Proof. by move=> a; rewrite -(cardC1 a); apply: eq_card=> x; rewrite !inE. Qed.
Lemma cardsD1 : forall a A, #|A| = (a \in A) + #|A :\ a|.
Proof.
move=> a A; rewrite (cardD1 a); congr (_ + _).
by apply: eq_card => x; rewrite !inE.
Qed.
Lemma subsetIl : forall A B, A :&: B \subset A.
Proof. by move=> A B; apply/subsetP=> x; rewrite inE; case/andP. Qed.
Lemma subsetIr : forall A B, A :&: B \subset B.
Proof. by move=> A B; apply/subsetP=> x; rewrite inE; case/andP. Qed.
Lemma subsetUl : forall A B, A \subset A :|: B.
Proof. by move=> A B; apply/subsetP=> x; rewrite inE => ->. Qed.
Lemma subsetUr : forall A B, B \subset A :|: B.
Proof. by move=> A B; apply/subsetP=> x; rewrite inE orbC => ->. Qed.
Lemma subsetDl : forall A B, A :\: B \subset A.
Proof. by move=> A B; rewrite setDE subsetIl. Qed.
Lemma subsetDr : forall A B, A :\: B \subset ~: B.
Proof. by move=> A B; rewrite setDE subsetIr. Qed.
Lemma sub1set : forall A x, ([set x] \subset A) = (x \in A).
Proof.
by move=> A x; rewrite -subset_pred1; apply: eq_subset=> y; rewrite !inE.
Qed.
Lemma subset1 : forall A x, (A \subset [set x]) = (A == [set x]) || (A == set0).
Proof.
move=> A x; rewrite {1}eqEsubset.
case e: (A == set0); first by move/eqP:e->; rewrite sub0set orbT.
move/set0Pn: e=> [y Hy]; case f:(A \subset [set x]); last by [].
by move/subsetP: f; move/(_ _ Hy); move/set1P<-; rewrite sub1set orbF.
Qed.
Lemma subsetD1 : forall A x, A :\ x \subset A.
Proof. by move=> A x; apply/subsetP=> y; case/setD1P. Qed.
Lemma setIidPl : forall A B, reflect (A :&: B = A) (A \subset B).
Proof.
move=> A B; apply: (iffP subsetP) => [sAB | <- x]; last by case/setIP.
by apply/setP=> x; rewrite inE; case Ax: (x \in A); rewrite // sAB.
Qed.
Implicit Arguments setIidPl [A B].
Lemma setIidPr : forall A B, reflect (A :&: B = B) (B \subset A).
Proof. move=> A B; rewrite setIC; exact: setIidPl. Qed.
Lemma setUidPl : forall A B, reflect (A :|: B = A) (B \subset A).
Proof.
move=> A B; rewrite -setCS (sameP setIidPl eqP) -setCU (inj_eq setC_inj).
exact: eqP.
Qed.
Lemma setUidPr : forall A B, reflect (A :|: B = B) (A \subset B).
Proof. move=> A B; rewrite setUC; exact: setUidPl. Qed.
Lemma setDidPl : forall A B, reflect (A :\: B = A) [disjoint A & B].
Proof. move=> A B; rewrite setDE disjoints_subset; exact: setIidPl. Qed.
Lemma subIset : forall A B C,
(B \subset A) || (C \subset A) -> (B :&: C \subset A).
Proof.
by move=> A B C; case/orP; apply: subset_trans; rewrite (subsetIl, subsetIr).
Qed.
Lemma subsetI : forall A B C,
(A \subset B :&: C) = (A \subset B) && (A \subset C).
Proof.
move=> A B C; rewrite !(sameP setIidPl eqP) setIA.
case: (A :&: B =P A) => [-> //| nsAa].
by apply/eqP=> sAab; case: nsAa; rewrite -sAab -setIA -setIIl setIAC.
Qed.
Lemma subUset : forall A B C,
(B :|: C \subset A) = (B \subset A) && (C \subset A).
Proof. by move=> A B C; rewrite -setCS setCU subsetI !setCS. Qed.
Lemma subsetU : forall A B C,
(A \subset B) || (A \subset C) -> A \subset B :|: C.
Proof. move=> A B C; rewrite -!(setCS _ A) setCU; exact: subIset. Qed.
Lemma subsetD : forall A B C,
(A \subset B :\: C) = (A \subset B) && [disjoint A & C].
Proof. by move=> A B C; rewrite setDE subsetI -disjoints_subset. Qed.
Lemma subDset : forall A B C, (A :\: B \subset C) = (A \subset B :|: C).
Proof.
move=> A B C; apply/subsetP/subsetP=> sABC x; rewrite !inE.
by case Bx: (x \in B) => // Ax; rewrite sABC ?inE ?Bx.
by case Bx: (x \in B) => //; move/sABC; rewrite inE Bx.
Qed.
Lemma setDeq0 : forall A B, (A :\: B == set0) = (A \subset B).
Proof. by move=> A B; rewrite -subset0 subDset setU0. Qed.
Lemma properD1 : forall A x, x \in A -> A :\ x \proper A.
Proof.
move=> A x Ax; rewrite properE subsetD1; apply/subsetPn; exists x=> //.
by rewrite in_setD1 Ax eqxx.
Qed.
Lemma properIr : forall A B, ~~ (B \subset A) -> A :&: B \proper B.
Proof.
by move=> A B nsAB; rewrite properE subsetIr subsetI negb_andb nsAB.
Qed.
Lemma properIl : forall A B, ~~ (A \subset B) -> A :&: B \proper A.
Proof.
by move=> A B nsBA; rewrite properE subsetIl subsetI negb_andb nsBA orbT.
Qed.
Lemma properUr : forall A B, ~~ (A \subset B) -> B \proper A :|: B.
Proof.
by move=> A B; rewrite properE subsetUr subUset subxx /= andbT.
Qed.
Lemma properUl : forall A B, ~~ (B \subset A) -> A \proper A :|: B.
Proof. by move=> A B ned; rewrite setUC properUr. Qed.
Lemma proper1set : forall A x, ([set x] \proper A) -> (x \in A).
Proof. by move=> A x; move/proper_sub; rewrite sub1set. Qed.
Lemma properIset : forall A B C,
(B \proper A) || (C \proper A) -> (B :&: C \proper A).
Proof.
move=> A B C.
by case/orP; apply: sub_proper_trans; rewrite (subsetIl, subsetIr).
Qed.
Lemma properI : forall A B C,
(A \proper B :&: C) -> (A \proper B) && (A \proper C).
Proof.
move=> A B C pAI; apply/andP.
by split; apply: (proper_sub_trans pAI); rewrite (subsetIl, subsetIr).
Qed.
Lemma properU : forall A B C,
(B :|: C \proper A) -> (B \proper A) && (C \proper A).
Proof.
move=> A B C pUA; apply/andP.
by split; apply: sub_proper_trans pUA; rewrite (subsetUr, subsetUl).
Qed.
Lemma properD : forall A B C,
(A \proper B :\: C) -> (A \proper B) && [disjoint A & C].
Proof.
move=> A B C; rewrite setDE; move/properI; case/andP=>->; move/proper_sub.
by rewrite disjoints_subset; move->.
Qed.
End setOps.
Implicit Arguments set1P [T x a].
Implicit Arguments set2P [T x a b].
Implicit Arguments setIdP [T x pA pB].
Implicit Arguments setIP [T x A B].
Implicit Arguments setU1P [T x a B].
Implicit Arguments setD1P [T x A b].
Implicit Arguments setUP [T x A B].
Implicit Arguments setDP [T x A B].
Implicit Arguments setCP [T x A].
Implicit Arguments setIidPl [T A B].
Implicit Arguments setIidPr [T A B].
Implicit Arguments setUidPl [T A B].
Implicit Arguments setUidPr [T A B].
Implicit Arguments setDidPl [T A B].
Prenex Implicits set1P set2P setU1P setD1P setIdP setIP setUP setDP setCP.
Prenex Implicits setIidPl setIidPr setUidPl setUidPr setDidPl.
Section setOpsAlgebra.
Import Monoid.
Variable T : finType.
Canonical Structure setI_monoid := Law (@setIA T) (@setTI T) (@setIT T).
Canonical Structure setI_comoid := ComLaw (@setIC T).
Canonical Structure setI_muloid := MulLaw (@set0I T) (@setI0 T).
Canonical Structure setU_monoid := Law (@setUA T) (@set0U T) (@setU0 T).
Canonical Structure setU_comoid := ComLaw (@setUC T).
Canonical Structure setU_muloid := MulLaw (@setTU T) (@setUT T).
Canonical Structure setI_addoid := AddLaw (@setUIl T) (@setUIr T).
Canonical Structure setU_addoid := AddLaw (@setIUl T) (@setIUr T).
End setOpsAlgebra.
Section CartesianProd.
Variables fT1 fT2 : finType.
Variables (A1 : {set fT1}) (A2 : {set fT2}).
Definition setX := [set u | (u.1 \in A1) && (u.2 \in A2)].
Lemma in_setX : forall x1 x2,
((x1, x2) \in setX) = (x1 \in A1) && (x2 \in A2).
Proof. by move=> *; rewrite inE. Qed.
Lemma setXP : forall x1 x2,
reflect (x1 \in A1 /\ x2 \in A2) ((x1, x2) \in setX).
Proof. by move=> x1 x2; rewrite inE; exact: andP. Qed.
Lemma cardsX : #|setX| = #|A1| * #|A2|.
Proof. by rewrite cardsE cardX. Qed.
End CartesianProd.
Implicit Arguments setXP [x1 x2 fT1 fT2 A1 A2].
Prenex Implicits setXP.
Notation Local imset_def :=
(fun (aT rT : finType) f (D : mem_pred aT) => [set y \in @image aT rT f D]).
Notation Local imset2_def :=
(fun (aT1 aT2 rT : finType) f (D1 : mem_pred aT1) (D2 : _ -> mem_pred aT2) =>
[set y \in @image _ rT (prod_curry f) [pred u | D1 u.1 && D2 u.1 u.2]]).
Module Type ImsetSig.
Parameter imset : forall aT rT : finType,
(aT -> rT) -> mem_pred aT -> {set rT}.
Parameter imset2 : forall aT1 aT2 rT : finType,
(aT1 -> aT2 -> rT) -> mem_pred aT1 -> (aT1 -> mem_pred aT2) -> {set rT}.
Axiom imsetE : imset = imset_def.
Axiom imset2E : imset2 = imset2_def.
End ImsetSig.
Module Imset : ImsetSig.
Definition imset := imset_def.
Definition imset2 := imset2_def.
Lemma imsetE : imset = imset_def. Proof. by []. Qed.
Lemma imset2E : imset2 = imset2_def. Proof. by []. Qed.
End Imset.
Notation imset := Imset.imset.
Notation imset2 := Imset.imset2.
Canonical Structure imset_unlock := Unlockable Imset.imsetE.
Canonical Structure imset2_unlock := Unlockable Imset.imset2E.
Definition preimset (aT : finType) rT f (R : mem_pred rT) :=
[set x : aT | in_mem (f x) R].
Notation "f @^-1: R" := (preimset f (mem R)) (at level 24) : set_scope.
Notation "f @: D" := (imset f (mem D)) (at level 24) : set_scope.
Notation "f @2: ( D1 , D2 )" := (imset2 f (mem D1) (fun _ => (mem D2)))
(at level 24, format "f @2: ( D1 , D2 )") : set_scope.
Notation "[ 'set' E | x <- A ]" := ((fun x => E) @: A)
(at level 0, E at level 69,
format "[ 'set' E | x <- A ]") : set_scope.
Notation "[ 'set' E | x <- A , P ]" := ((fun x => E) @: [set x \in A | P])
(at level 0, E at level 69,
format "[ 'set' E | x <- A , P ]") : set_scope.
Notation "[ 'set' E | x <- A , y <- B ]" :=
(imset2 (fun x y => E) (mem A) (fun x => (mem B)))
(at level 0, E at level 69,
format "[ 'set' E | x <- A , y <- B ]") : set_scope.
Notation "[ 'set' E | x <- A , y <- B , P ]" :=
[set E | x <- A, y <- [set y \in B | P]]
(at level 0, E at level 69,
format "[ 'set' E | x <- A , y <- B , P ]") : set_scope.
Notation "[ 'set' E | x <- A , y < - B ]" :=
(imset2 (fun x y => E) (mem A) (fun _ => mem B))
(at level 0, E at level 69,
format "[ 'set' E | x <- A , y < - B ]") : set_scope.
Notation "[ 'set' E | x <- A , y < - B , P ]" :=
(imset2 (fun x y => E) (mem A) (fun _ => mem [set y \in B | P]))
(at level 0, E at level 69,
format "[ 'set' E | x <- A , y < - B , P ]") : set_scope.
Section FunImage.
Variables aT aT2 : finType.
Section ImsetTheory.
Variable rT : finType.
Section ImsetProp.
Variables (f : aT -> rT) (f2 : aT -> aT2 -> rT).
Lemma imsetP : forall D y,
reflect (exists2 x, in_mem x D & y = f x) (y \in imset f D).
Proof. move=> D y; rewrite [@imset _]unlock inE; exact: imageP. Qed.
CoInductive imset2_spec D1 D2 y : Prop :=
Imset2spec x1 x2 of in_mem x1 D1 & in_mem x2 (D2 x1) & y = f2 x1 x2.
Lemma imset2P : forall D1 D2 y,
reflect (imset2_spec D1 D2 y) (y \in imset2 f2 D1 D2).
Proof.
move=> D1 D2 y; rewrite [@imset2 _]unlock inE.
apply: (iffP (imageP _ _ _)) => [[[x1 x2] Dx12] | [x1 x2 Dx1 Dx2]] -> {y}.
by case/andP: Dx12; exists x1 x2.
by exists (x1, x2); rewrite //= Dx1.
Qed.
Lemma mem_imset : forall (D : pred aT) x, x \in D -> f x \in f @: D.
Proof. by move=> D x Dx; apply/imsetP; exists x. Qed.
Lemma imset0 : f @: set0 = set0.
Proof. by apply/setP => y; rewrite inE; apply/imsetP=> [[x]]; rewrite inE. Qed.
Lemma imset_set1 : forall x, f @: [set x] = [set f x].
Proof.
move=> x; apply/setP => y.
by apply/imsetP/set1P=> [[x']| ->]; [move/set1P-> | exists x; rewrite ?set11].
Qed.
Lemma mem_imset2 : forall (D : pred aT) (D2 : aT -> pred aT2) x x2,
x \in D -> x2 \in D2 x ->
f2 x x2 \in imset2 f2 (mem D) (fun x1 => mem (D2 x1)).
Proof. by move=> D D2 x x2 Dx Dx2; apply/imset2P; exists x x2. Qed.
Lemma preimsetS : forall A B : pred rT,
A \subset B -> (f @^-1: A) \subset (f @^-1: B).
Proof.
move=> A B sAB; apply/subsetP=> y; rewrite !inE; exact: (subsetP sAB).
Qed.
Lemma preimset0 : f @^-1: set0 = set0.
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma preimsetT : f @^-1: setT = setT.
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma preimsetI : forall A B : {set rT},
f @^-1: (A :&: B) = (f @^-1: A) :&: (f @^-1: B).
Proof. by move=> A B; apply/setP=> y; rewrite !inE. Qed.
Lemma preimsetU : forall A B : {set rT},
f @^-1: (A :|: B) = (f @^-1: A) :|: (f @^-1: B).
Proof. by move=> A B; apply/setP=> y; rewrite !inE. Qed.
Lemma preimsetD : forall A B : {set rT},
f @^-1: (A :\: B) = (f @^-1: A) :\: (f @^-1: B).
Proof. by move=> A B; apply/setP=> y; rewrite !inE. Qed.
Lemma preimsetC : forall A : {set rT},
f @^-1: (~: A) = ~: f @^-1: A.
Proof. by move=> A; apply/setP=> y; rewrite !inE. Qed.
Lemma imsetS : forall A B : pred aT,
A \subset B -> f @: A \subset f @: B.
Proof.
move=> A B sAB; apply/subsetP=> y; case/imsetP=> x Ax ->.
by apply/imsetP; exists x; rewrite ?(subsetP sAB).
Qed.
Lemma imset_proper : forall (A B : {set aT})(injf : {in B, injective f}),
A \proper B -> f @: A \proper f @: B.
Proof.
move=> A B fi; case/properP=> sAB [x Bx nAx]; rewrite properE imsetS //=.
apply/subsetP; move/(_ (f x) (mem_imset Bx)); case/imsetP=> y Ay.
by move/(fi _ Bx)=> e; move/negP: nAx; rewrite e.
Qed.
Lemma preimset_proper : forall (A B : {set rT}),
B \subset codom f -> A \proper B -> (f @^-1: A) \proper (f @^-1: B).
Proof.
move=> A B sBc; case/properP=> sAB [u Bu nAu]; rewrite properE preimsetS //=.
by apply/subsetPn; exists (iinv (subsetP sBc _ Bu)); rewrite inE /= f_iinv.
Qed.
Lemma imsetU : forall A B : {set aT},
f @: (A :|: B) = (f @: A) :|: (f @: B).
Proof.
move=> A B; apply/eqP; rewrite eqEsubset subUset.
rewrite 2?imsetS (andbT, subsetUl, subsetUr) // andbT.
apply/subsetP=> y; case/imsetP=> x ABx ->{y}; apply/setUP.
by case/setUP: ABx => [Ax | Bx]; [left | right]; apply/imsetP; exists x.
Qed.
Lemma imsetU1 : forall a (A : {set aT}), f @: (a |: A) = f a |: (f @: A).
Proof. by move=> a A; rewrite imsetU imset_set1. Qed.
Lemma imsetI : forall A B : {set aT},
{in A & B, injective f} -> f @: (A :&: B) = f @: A :&: f @: B.
Proof.
move=> A B finj; apply/eqP; rewrite eqEsubset subsetI.
rewrite 2?imsetS (andTb, subsetIl, subsetIr) //=.
apply/subsetP=> y; case/setIP; case/imsetP=> x Ax ->{y}.
by case/imsetP=> z Bz; move/finj=> eqxz; rewrite mem_imset // inE Ax eqxz.
Qed.
Lemma imset2Sl : forall (A B : pred aT) (C : pred aT2),
A \subset B -> f2 @2: (A, C) \subset f2 @2: (B, C).
Proof.
move=> A B C sAB; apply/subsetP=> y; case/imset2P=> x x2 Ax Cx2 ->.
by apply/imset2P; exists x x2; rewrite ?(subsetP sAB).
Qed.
Lemma imset2Sr : forall (A B : pred aT2) (C : pred aT),
A \subset B -> f2 @2: (C, A) \subset f2 @2: (C, B).
Proof.
move=> A B C sAB; apply/subsetP=> y; case/imset2P=> x x2 Cx Ax2 ->.
by apply/imset2P; exists x x2; rewrite ?(subsetP sAB).
Qed.
Lemma imset2S : forall (A B : pred aT) (A2 B2 : pred aT2),
A \subset B -> A2 \subset B2 -> f2 @2: (A, A2) \subset f2 @2: (B, B2).
Proof. move=> *; exact: subset_trans (imset2Sl _ _) (imset2Sr _ _). Qed.
End ImsetProp.
Lemma eq_preimset : forall (f g : aT -> rT) (R : pred rT),
f =1 g -> f @^-1: R = g @^-1: R.
Proof. by move=> f g R eqfg; apply/setP => y; rewrite !inE eqfg. Qed.
Lemma eq_imset : forall (f g : aT -> rT) (D : {set aT}),
f =1 g -> f @: D = g @: D.
Proof.
move=> f g R eqfg; apply/setP=> y.
by apply/imsetP/imsetP=> [] [x Dx ->]; exists x; rewrite ?eqfg.
Qed.
Lemma eq_in_imset : forall (f g : aT -> rT) (D : {set aT}),
{in D, f =1 g} -> f @: D = g @: D.
Proof.
move=> f g D eqfg; apply/setP => y.
by apply/imsetP/imsetP=> [] [x Dx ->]; exists x; rewrite ?eqfg.
Qed.
Lemma eq_in_imset2 :
forall (f g : aT -> aT2 -> rT) (D : pred aT) (D2 : pred aT2),
{in D & D2, f =2 g} -> f @2: (D, D2) = g @2: (D, D2).
Proof.
move=> f g D D2 eqfg; apply/setP => y.
by apply/imset2P/imset2P=> [] [x x2 Dx Dx2 ->]; exists x x2; rewrite ?eqfg.
Qed.
End ImsetTheory.
Lemma imset2_pair : forall (A : {set aT}) (B : {set aT2}),
[set (x, y) | x <- A, y <- B] = setX A B.
Proof.
move=> A B; apply/setP=> [[x y]]; rewrite !inE /=.
by apply/imset2P/andP=> [[_ _ _ _ [-> ->]//]| []]; exists x y.
Qed.
Lemma setXS : forall (A1 B1 : {set aT}) (A2 B2 : {set aT2}),
A1 \subset B1 -> A2 \subset B2 -> setX A1 A2 \subset setX B1 B2.
Proof. by move=> *; rewrite -!imset2_pair imset2S. Qed.
End FunImage.
Implicit Arguments imsetP [aT rT f D y].
Implicit Arguments imset2P [aT aT2 rT f2 D1 D2 y].
Prenex Implicits imsetP imset2P.
Section BigOps.
Variables (R : Type) (nil : R).
Variables (law : @Monoid.law R nil) (alaw : @Monoid.com_law R nil).
Let op := Monoid.operator law.
Let aop := Monoid.operator alaw.
Variables I J : finType.
Implicit Type A B : {set I}.
Implicit Type h : I -> J.
Implicit Type P : pred I.
Implicit Type F : I -> R.
Lemma big_set0 : forall F, \big[op/nil]_(i \in set0) F i = nil.
Proof. by move=> F; apply: big_pred0 => i; rewrite inE. Qed.
Lemma big_set1 : forall a F, \big[op/nil]_(i \in [set a]) F i = F a.
Proof. by move=> a F; apply: big_pred1 => i; rewrite !inE. Qed.
Lemma big_setID : forall A B P F,
\big[aop/nil]_(i \in A | P i) F i =
aop (\big[aop/nil]_(i \in A :&: B | P i) F i)
(\big[aop/nil]_(i \in A :\: B | P i) F i).
Proof.
move=> A B P F; rewrite (bigID (mem B)) setDE.
by congr aop; apply: eq_bigl => i; rewrite !inE andbAC.
Qed.
Lemma big_setD1 : forall a A F, a \in A ->
\big[aop/nil]_(i \in A) F i = aop (F a) (\big[aop/nil]_(i \in A :\ a) F i).
Proof.
move=> a A F Aa; rewrite (bigD1 a Aa); congr aop.
by apply: eq_bigl=> x; rewrite !inE andbC.
Qed.
Lemma big_setU1 : forall a A F, a \notin A ->
\big[aop/nil]_(i \in a |: A) F i = aop (F a) (\big[aop/nil]_(i \in A) F i).
Proof. by move=> a A F Aa; rewrite (@big_setD1 a) ?setU11 //= setU1K. Qed.
Lemma partition_big_imset : forall h A F,
\big[aop/nil]_(i \in A) F i =
\big[aop/nil]_(j \in h @: A) \big[aop/nil]_(i \in A | h i == j) F i.
Proof.
by move=> h A F; apply: partition_big => i Ai; apply/imsetP; exists i.
Qed.
End BigOps.
Implicit Arguments big_setID [R nil alaw I A].
Implicit Arguments big_setD1 [R nil alaw I A F].
Implicit Arguments big_setU1 [R nil alaw I A F].
Implicit Arguments partition_big_imset [R nil alaw I J].
Section Fun2Set1.
Variables aT1 aT2 rT : finType.
Variables (f : aT1 -> aT2 -> rT).
Lemma imset2_set1l : forall x1 (D2 : pred aT2),
f @2: ([set x1], D2) = f x1 @: D2.
Proof.
move=> x1 D2; apply/setP => y; apply/imset2P/imsetP=> [[x x2]| [x2 Dx2 ->]].
by move/set1P->; exists x2.
by exists x1 x2; rewrite ?set11.
Qed.
Lemma imset2_set1r : forall x2 (D1 : pred aT1),
f @2: (D1, [set x2]) = f^~ x2 @: D1.
Proof.
move=> x2 D1; apply/setP => y.
apply/imset2P/imsetP=> [[x1 x Dx1]| [x1 Dx1 ->]].
by move/set1P->; exists x1.
by exists x1 x2; rewrite ?set11.
Qed.
End Fun2Set1.
Section CardFunImage.
Variables aT aT2 rT : finType.
Variables (f : aT -> rT) (g : rT -> aT) (f2 : aT -> aT2 -> rT).
Variables (D : pred aT) (D2 : pred aT).
Lemma imset_card : #|f @: D| = #|[image f of D]|.
Proof. by rewrite [@imset _]unlock cardsE. Qed.
Lemma leq_imset_card : #|f @: D| <= #|D|.
Proof. by rewrite imset_card leq_image_card. Qed.
Lemma card_in_imset : {in D &, injective f} -> #|f @: D| = #|D|.
Proof. by move=> injf; rewrite imset_card card_in_image. Qed.
Lemma card_imset : injective f -> #|f @: D| = #|D|.
Proof. by move=> injf; rewrite imset_card card_image. Qed.
Lemma can2_in_imset_pre :
{in D, cancel f g} -> {on D, cancel g & f} -> f @: D = g @^-1: D.
Proof.
move=> fK gK; apply/setP=> y; rewrite inE.
by apply/imsetP/idP=> [[x Ax ->] | Agy]; last exists (g y); rewrite ?(fK, gK).
Qed.
Lemma can2_imset_pre : cancel f g -> cancel g f -> f @: D = g @^-1: D.
Proof. move=> *; apply: can2_in_imset_pre; exact: in1W. Qed.
End CardFunImage.
Lemma on_card_preimset : forall (aT rT : finType) (f : aT -> rT) (R : pred rT),
{on R, bijective f} -> #|f @^-1: R| = #|R|.
Proof.
move=> aT rT f R [g fK gK]; rewrite -(can2_in_imset_pre gK) // card_in_imset //.
exact: can_in_inj gK.
Qed.
Lemma can_imset_pre : forall (T : finType) f g (A : {set T}),
cancel f g -> f @: A = g @^-1: A :> {set T}.
Proof.
move=> T f g A fK; apply: can2_imset_pre => // x.
suffices fx: codom f x by rewrite -(f_iinv fx) fK.
move: x; apply/(subset_cardP (card_codom (can_inj fK))); exact/subsetP.
Qed.
Lemma card_preimset : forall (T : finType) (f : T -> T) (A : {set T}),
injective f -> #|f @^-1: A| = #|A|.
Proof.
move=> T f A injf; apply: on_card_preimset; apply: onW_bij.
have ontof: codom f _ by apply/(subset_cardP (card_codom injf)); exact/subsetP.
by exists (fun x => iinv (ontof x)) => x; rewrite (f_iinv, iinv_f).
Qed.
Section FunImageComp.
Variables T T' U : finType.
Lemma imset_comp : forall (f : T' -> U) (g : T -> T') (H : pred T),
(f \o g) @: H = f @: (g @: H).
Proof.
move=> f g H; apply/setP; apply/subset_eqP; apply/andP.
split; apply/subsetP=> x; move/imsetP=> [x0 Hx0 ->]; apply/imsetP.
by exists (g x0); first apply: mem_imset.
by move/imsetP: Hx0=> [x1 Hx1 ->]; exists x1.
Qed.
End FunImageComp.
Reserved Notation "\bigcup_ i F"
(at level 41, F at level 41, i at level 0,
format "'[' \bigcup_ i '/ ' F ']'").
Reserved Notation "\bigcup_ ( <- r | P ) F"
(at level 41, F at level 41, r at level 50,
format "'[' \bigcup_ ( <- r | P ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i <- r | P ) F"
(at level 41, F at level 41, i, r at level 50,
format "'[' \bigcup_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i <- r ) F"
(at level 41, F at level 41, i, r at level 50,
format "'[' \bigcup_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( m <= i < n | P ) F"
(at level 41, F at level 41, m, i, n at level 50,
format "'[' \bigcup_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( m <= i < n ) F"
(at level 41, F at level 41, i, m, n at level 50,
format "'[' \bigcup_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i | P ) F"
(at level 41, F at level 41, i at level 50,
format "'[' \bigcup_ ( i | P ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i : t | P ) F"
(at level 41, F at level 41, i at level 50,
format "'[' \bigcup_ ( i : t | P ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i : t ) F"
(at level 41, F at level 41, i at level 50,
format "'[' \bigcup_ ( i : t ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i < n | P ) F"
(at level 41, F at level 41, i, n at level 50,
format "'[' \bigcup_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i < n ) F"
(at level 41, F at level 41, i, n at level 50,
format "'[' \bigcup_ ( i < n ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i \in A | P ) F"
(at level 41, F at level 41, i, A at level 50,
format "'[' \bigcup_ ( i \in A | P ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i \in A ) F"
(at level 41, F at level 41, i, A at level 50,
format "'[' \bigcup_ ( i \in A ) '/ ' F ']'").
Notation "\bigcup_ ( <- r | P ) F" :=
(\big[@setU _/set0]_(<- r | P%B) F%SET) : set_scope.
Notation "\bigcup_ ( i <- r | P ) F" :=
(\big[@setU _/set0]_(i <- r | P) F%SET) : set_scope.
Notation "\bigcup_ ( i <- r ) F" :=
(\big[@setU _/set0]_(i <- r) F%SET) : set_scope.
Notation "\bigcup_ ( m <= i < n | P ) F" :=
(\big[@setU _/set0]_(m <= i < n | P%B) F%SET) : set_scope.
Notation "\bigcup_ ( m <= i < n ) F" :=
(\big[@setU _/set0]_(m <= i < n) F%SET) : set_scope.
Notation "\bigcup_ ( i | P ) F" :=
(\big[@setU _/set0]_(i | P%B) F%SET) : set_scope.
Notation "\bigcup_ i F" :=
(\big[@setU _/set0]_i F%SET) : set_scope.
Notation "\bigcup_ ( i : t | P ) F" :=
(\big[@setU _/set0]_(i : t | P%B) F%SET) (only parsing): set_scope.
Notation "\bigcup_ ( i : t ) F" :=
(\big[@setU _/set0]_(i : t) F%SET) (only parsing) : set_scope.
Notation "\bigcup_ ( i < n | P ) F" :=
(\big[@setU _/set0]_(i < n | P%B) F%SET) : set_scope.
Notation "\bigcup_ ( i < n ) F" :=
(\big[@setU _/set0]_ (i < n) F%SET) : set_scope.
Notation "\bigcup_ ( i \in A | P ) F" :=
(\big[@setU _/set0]_(i \in A | P%B) F%SET) : set_scope.
Notation "\bigcup_ ( i \in A ) F" :=
(\big[@setU _/set0]_(i \in A) F%SET) : set_scope.
Reserved Notation "\bigcap_ i F"
(at level 41, F at level 41, i at level 0,
format "'[' \bigcap_ i '/ ' F ']'").
Reserved Notation "\bigcap_ ( <- r | P ) F"
(at level 41, F at level 41, r at level 50,
format "'[' \bigcap_ ( <- r | P ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i <- r | P ) F"
(at level 41, F at level 41, i, r at level 50,
format "'[' \bigcap_ ( i <- r | P ) F ']'").
Reserved Notation "\bigcap_ ( i <- r ) F"
(at level 41, F at level 41, i, r at level 50,
format "'[' \bigcap_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( m <= i < n | P ) F"
(at level 41, F at level 41, m, i, n at level 50,
format "'[' \bigcap_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( m <= i < n ) F"
(at level 41, F at level 41, i, m, n at level 50,
format "'[' \bigcap_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i | P ) F"
(at level 41, F at level 41, i at level 50,
format "'[' \bigcap_ ( i | P ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i : t | P ) F"
(at level 41, F at level 41, i at level 50,
format "'[' \bigcap_ ( i : t | P ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i : t ) F"
(at level 41, F at level 41, i at level 50,
format "'[' \bigcap_ ( i : t ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i < n | P ) F"
(at level 41, F at level 41, i, n at level 50,
format "'[' \bigcap_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i < n ) F"
(at level 41, F at level 41, i, n at level 50,
format "'[' \bigcap_ ( i < n ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i \in A | P ) F"
(at level 41, F at level 41, i, A at level 50,
format "'[' \bigcap_ ( i \in A | P ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i \in A ) F"
(at level 41, F at level 41, i, A at level 50,
format "'[' \bigcap_ ( i \in A ) '/ ' F ']'").
Notation "\bigcap_ ( <- r | P ) F" :=
(\big[@setI _/setT]_(<- r | P%B) F%SET) : set_scope.
Notation "\bigcap_ ( i <- r | P ) F" :=
(\big[@setI _/setT]_(i <- r | P%B) F%SET) : set_scope.
Notation "\bigcap_ ( i <- r ) F" :=
(\big[@setI _/setT]_(i <- r) F%SET) : set_scope.
Notation "\bigcap_ ( m <= i < n | P ) F" :=
(\big[@setI _/setT]_(m <= i < n | P%B) F%SET) : set_scope.
Notation "\bigcap_ ( m <= i < n ) F" :=
(\big[@setI _/setT]_(m <= i < n) F%SET) : set_scope.
Notation "\bigcap_ ( i | P ) F" :=
(\big[@setI _/setT]_(i | P%B) F%SET) : set_scope.
Notation "\bigcap_ i F" :=
(\big[@setI _/setT]_i F%SET) : set_scope.
Notation "\bigcap_ ( i : t | P ) F" :=
(\big[@setI _/setT]_(i : t | P%B) F%SET) (only parsing): set_scope.
Notation "\bigcap_ ( i : t ) F" :=
(\big[@setI _/setT]_(i : t) F%SET) (only parsing) : set_scope.
Notation "\bigcap_ ( i < n | P ) F" :=
(\big[@setI _/setT]_(i < n | P%B) F%SET) : set_scope.
Notation "\bigcap_ ( i < n ) F" :=
(\big[@setI _/setT]_(i < n) F%SET) : set_scope.
Notation "\bigcap_ ( i \in A | P ) F" :=
(\big[@setI _/setT]_(i \in A | P%B) F%SET) : set_scope.
Notation "\bigcap_ ( i \in A ) F" :=
(\big[@setI _/setT]_(i \in A) F%SET) : set_scope.
Section BigSetOps.
Variables T I : finType.
Implicit Type U : pred T.
Implicit Type P : pred I.
Implicit Types A B : {set I}.
Implicit Type F : I -> {set T}.
Lemma bigcup_sup : forall j P F, P j -> F j \subset \bigcup_(i | P i) F i.
Proof. by move=> j P F Pj; rewrite (bigD1 j) //= subsetUl. Qed.
Lemma bigcup_max : forall j U P F, P j ->
U \subset F j -> U \subset \bigcup_(i | P i) F i.
Proof. by move=> j U P F Pj sUF; exact: subset_trans (bigcup_sup _ Pj). Qed.
Lemma bigcupP : forall x P F,
reflect (exists2 i, P i & x \in F i) (x \in \bigcup_(i | P i) F i).
Proof.
move=> x P F; apply: (iffP idP) => [|[i Pi]]; last first.
apply: subsetP x; exact: bigcup_sup.
apply big_prop => [|U1 U2 IH1 IH2|i Pi]; try by [rewrite inE | exists i].
by case/setUP; [exact: IH1 | exact: IH2].
Qed.
Lemma bigcupsP : forall U P F,
reflect (forall i, P i -> F i \subset U) (\bigcup_(i | P i) F i \subset U).
Proof.
move=> U P F; apply: (iffP idP) => [sFU i Pi| sFU].
by apply: subset_trans sFU; exact: bigcup_sup.
apply/subsetP=> x; case/bigcupP=> i Pi; exact: (subsetP (sFU i Pi)).
Qed.
Lemma bigcup_disjoint : forall U P F,
(forall i, P i -> [disjoint U & F i]) ->
[disjoint U & \bigcup_(i | P i) F i].
Proof.
move=> U P F dUF; rewrite disjoint_sym disjoint_subset.
by apply/bigcupsP=> i; move/dUF; rewrite disjoint_sym disjoint_subset.
Qed.
Lemma bigcup_setU : forall A B F,
\bigcup_(i \in A :|: B) F i =
(\bigcup_(i \in A) F i) :|: (\bigcup_ (i \in B) F i).
Proof.
move=> A B F; apply/setP=> x; apply/bigcupP/setUP=> [[i]|].
by case/setUP; [left | right]; apply/bigcupP; exists i.
by case; case/bigcupP=> i Pi; exists i; rewrite // inE Pi ?orbT.
Qed.
Lemma bigcap_inf : forall j P F, P j -> \bigcap_(i | P i) F i \subset F j.
Proof. by move=> j P F Pj; rewrite (bigD1 j) //= subsetIl. Qed.
Lemma bigcap_min : forall j U P F,
P j -> F j \subset U -> \bigcap_(i | P i) F i \subset U.
Proof. by move=> j U P F Pj; exact: subset_trans (bigcap_inf _ Pj). Qed.
Lemma bigcapsP : forall U P F,
reflect (forall i, P i -> U \subset F i) (U \subset \bigcap_(i | P i) F i).
Proof.
move=> U P F; apply: (iffP idP) => [sUF i Pi | sUF].
apply: subset_trans sUF _; exact: bigcap_inf.
apply big_prop => // [|U1 U2 sU1 sU2]; first by apply/subsetP=> x; rewrite inE.
by apply/subsetP=> x Ux; rewrite inE !(subsetP _ x Ux).
Qed.
Lemma bigcapP : forall x P F,
reflect (forall i, P i -> x \in F i) (x \in \bigcap_(i | P i) F i).
Proof.
move=> x P F; rewrite -sub1set.
by apply: (iffP (bigcapsP _ _ _)) => Fx i; move/Fx; rewrite sub1set.
Qed.
Lemma setC_bigcup : forall P F,
~: (\bigcup_(i | P i) F i) = \bigcap_(i | P i) ~: F i.
Proof.
move=> P F; pose R (U V : {set T}) := ~: U = V.
by apply: (big_rel R) => // [|U1 _ U2 _ <- <-]; rewrite /R ?setC0 ?setCU.
Qed.
Lemma setC_bigcap : forall P F,
~: (\bigcap_(i | P i) F i) = \bigcup_(i | P i) ~: F i.
Proof.
move=> P F; apply: setC_inj; rewrite setCK setC_bigcup.
by apply: eq_bigr => i Pi; rewrite setCK.
Qed.
Lemma bigcap_setU: forall A B F,
(\bigcap_(i \in A :|: B) F i) =
(\bigcap_(i \in A) F i) :&: (\bigcap_(i \in B) F i).
Proof.
by move=> A B F; apply: setC_inj; rewrite setCI !setC_bigcap bigcup_setU.
Qed.
End BigSetOps.
Implicit Arguments bigcup_sup [T I P F].
Implicit Arguments bigcup_max [T I U P F].
Implicit Arguments bigcupP [T I x P F].
Implicit Arguments bigcupsP [T I U P F].
Implicit Arguments bigcap_inf [T I P F].
Implicit Arguments bigcap_min [T I U P F].
Implicit Arguments bigcapP [T I x P F].
Implicit Arguments bigcapsP [T I U P F].
Prenex Implicits bigcupP bigcupsP bigcapP bigcapsP.
Section ImsetCurry.
Variables (aT1 aT2 rT : finType) (f : aT1 -> aT2 -> rT).
Section Curry.
Variables (A1 : {set aT1}) (A2 : {set aT2}).
Variables (D1 : pred aT1) (D2 : pred aT2).
Lemma curry_imset2X : f @2: (A1, A2) = prod_curry f @: (setX A1 A2).
Proof.
rewrite [@imset _]unlock unlock; apply/setP=> x; rewrite !in_set.
by apply: eq_image => u //=; rewrite inE.
Qed.
Lemma curry_imset2l : f @2: (D1, D2) = \bigcup_(x1 \in D1) f x1 @: D2.
Proof.
apply/setP=> y; apply/imset2P/bigcupP => [[x1 x2 Dx1 Dx2 ->{y}] | [x1 Dx1]].
by exists x1; rewrite // mem_imset.
by case/imsetP=> x2 Dx2 ->{y}; exists x1 x2.
Qed.
Lemma curry_imset2r : f @2: (D1, D2) = \bigcup_(x2 \in D2) f^~ x2 @: D1.
Proof.
apply/setP=> y; apply/imset2P/bigcupP => [[x1 x2 Dx1 Dx2 ->{y}] | [x2 Dx2]].
by exists x2; rewrite // (mem_imset (f^~ x2)).
by case/imsetP=> x1 Dx1 ->{y}; exists x1 x2.
Qed.
End Curry.
Lemma imset2Ul : forall (A B : {set aT1}) (C : {set aT2}),
f @2: (A :|: B, C) = f @2: (A, C) :|: f @2: (B, C).
Proof. by move=> A B C; rewrite !curry_imset2l bigcup_setU. Qed.
Lemma imset2Ur : forall (A : {set aT1}) (B C : {set aT2}),
f @2: (A, B :|: C) = f @2: (A, B) :|: f @2: (A, C).
Proof. by move=> A B C; rewrite !curry_imset2r bigcup_setU. Qed.
End ImsetCurry.
Section Partitions.
Variable T : finType.
Implicit Type A B D : {set T}.
Implicit Types P Q : {set {set T}}.
Definition cover P := \bigcup_(A \in P) A.
Definition trivIset P := \sum_(A \in P) #|A| == #|cover P|.
Definition partition P D := [&& cover P == D, trivIset P & set0 \notin P].
Lemma disjointEsetI : forall A B, [disjoint A & B] = (A :&: B == set0).
Proof. by move=> A B; rewrite disjoints_subset -setDeq0 setDE setCK. Qed.
Lemma disjoint_setI0 : forall A B, [disjoint A & B] -> A :&: B = set0.
Proof. by move=> A B; rewrite disjointEsetI; move/eqP. Qed.
Lemma leq_card_setU : forall A B,
#|A :|: B| <= #|A| + #|B| ?= iff [disjoint A & B].
Proof.
move=> A B; rewrite disjointEsetI eq_sym eqEcard sub0set /= cards0 leqn0.
by rewrite -cardsUI /leqif leq_addr -{1}(addn0 #|_|) eqn_addl eq_sym.
Qed.
Lemma leq_card_cover : forall P,
#|cover P| <= \sum_(A \in P) #|A| ?= iff trivIset P.
Proof.
move=> P; split; last exact: eq_sym.
apply: (big_rel (fun A n => #|A| <= n)) => // [|A n B m leA leB].
by rewrite cards0.
by apply: leq_trans (leq_add leA leB); rewrite leq_card_setU.
Qed.
Lemma trivIsetP : forall P,
reflect {in P &, forall A B, A = B \/ [disjoint A & B]} (trivIset P).
Proof.
move=> P.
have->: P = [set x \in enum (mem P)] by apply/setP=> x; rewrite inE mem_enum.
elim: {P}(enum _) (enum_uniq (mem P)) => [_|A e IHe] /=.
by rewrite /trivIset /cover !big_set0 cards0; left=> A; rewrite inE.
case/andP; rewrite set_cons -(in_set (fun B => B \in e)) => PA.
move/IHe {IHe}; move: {e}[set x \in e] PA => P PA IHP.
rewrite /trivIset /cover !big_setU1 //= eq_sym.
move/(monotone_leqif (leq_add2l #|A|)): (leq_card_cover P).
move/(leqif_trans (leq_card_setU _ _))->; rewrite disjoints_subset setC_bigcup.
case: bigcapsP=> [disjA | meetA]; last first.
right=> [tI]; case: meetA=> B PB; rewrite -disjoints_subset.
case: (tI A B) => // [||defA]; first 1 [exact: setU11 | exact: setU1r].
by rewrite defA PB in PA.
apply: (iffP IHP) => [] tI B C PB PC; last by apply: tI; exact: setU1r.
case/setU1P: PC => [->|]; case/setU1P: PB => [->|]; try by [left | exact: tI].
by right; rewrite disjoint_sym disjoints_subset disjA.
by right; rewrite disjoints_subset disjA.
Qed.
Lemma trivIsetI : forall P D, trivIset P -> trivIset (P ::&: D).
Proof.
move=> P D; move/trivIsetP=> tI; apply/trivIsetP=> A B.
by rewrite !inE; case/andP=> PA _; case/andP=> PB _; exact: tI.
Qed.
Lemma cover_setI : forall P D, cover (P ::&: D) \subset cover P :&: D.
Proof.
move=> P D; apply/bigcupsP=> A; rewrite inE; case/andP=> PA sAD.
by rewrite subsetI sAD andbT (bigcup_max A).
Qed.
Definition cover_at x P := odflt set0 (pick [pred A \in P | x \in A]).
Lemma mem_cover_at : forall P x, (x \in cover_at x P) = (x \in cover P).
Proof.
rewrite /cover_at => P x; symmetry; apply/bigcupP; case: pickP => /= [A | noA].
by case/andP=> PA Ax; rewrite Ax; exists A.
by rewrite inE => [[A PA Ax]]; case/andP: (noA A).
Qed.
Lemma cover_at_mem : forall P x, x \in cover P -> cover_at x P \in P.
Proof.
move=> P x; rewrite -mem_cover_at /cover_at.
by case: pickP => /= [A | _]; [case/andP | rewrite inE].
Qed.
Lemma cover_at_eq : forall P A x,
trivIset P -> A \in P -> (x \in cover P) && (cover_at x P == A) = (x \in A).
Proof.
move=> P A x; move/trivIsetP=> tI PA; rewrite -mem_cover_at /cover_at.
case: pickP => /= [B|]; last by move/(_ A); rewrite /= inE PA.
case/andP=> PB Bx; rewrite Bx; apply/eqP/idP=> [<- // | Ax].
by case: (tI A B) => //; case/existsP; exists x; exact/andP.
Qed.
Lemma same_cover_at : forall P x y,
trivIset P -> x \in cover_at y P -> cover_at x P = cover_at y P.
Proof.
rewrite {1 3}/cover_at => P x y tI; case: pickP => [A|]; last by rewrite inE.
case/andP=> PA _{y} /=; rewrite -(cover_at_eq _ tI) //.
by case/andP=> _; move/eqP.
Qed.
Section BigOps.
Variables (R : Type) (nil : R) (law : Monoid.com_law nil).
Let op := Monoid.operator law.
Let rhs P K F := \big[op/nil]_(A \in P) \big[op/nil]_(x \in A | K x) F x.
Lemma big_trivIset : forall P (K : pred T) (F : T -> R),
trivIset P -> \big[op/nil]_(x \in cover P | K x) F x = rhs P K F.
Proof.
move=> P K F tI; rewrite (partition_big (cover_at^~ P) (mem P)) -/op => [|x].
by apply: eq_bigr => A PA; apply: eq_bigl => x; rewrite andbAC cover_at_eq.
by case/andP=> Px _; exact: cover_at_mem.
Qed.
Lemma set_partition_big : forall P D (K : pred T) (F : T -> R),
partition P D -> \big[op/nil]_(x \in D | K x) F x = rhs P K F.
Proof. move=> P D K F; case/and3P; move/eqP=> <- *; exact: big_trivIset. Qed.
End BigOps.
Section Preim.
Variables (rT : eqType) (f : T -> rT).
Definition preim_at x := f @^-1: pred1 (f x).
Definition preim_partition D := [set D :&: preim_at x | x <- D].
Lemma preim_partitionP : forall D, partition (preim_partition D) D.
Proof.
move=> D; apply/and3P; split.
- apply/eqP; apply/setP=> x; apply/bigcupP/idP=> [[A] | Dx].
by case/imsetP=> y _ ->; case/setIP.
by exists (D :&: preim_at x); [exact: mem_imset | rewrite !inE Dx /=].
- apply/trivIsetP=> A B; case/imsetP=> x _ ->; case/imsetP=> y _ ->{A B}.
rewrite /preim_at; case: (f x =P f y) => [->| fxy]; [by left | right].
apply/existsP=> [[z]]; rewrite /= !inE andbCA; case/and3P=> -> /=.
by move/eqP => ->; move/eqP.
apply/imsetP=> [[x Dx]]; move/eqP; rewrite eq_sym.
by case/set0Pn; exists x; rewrite !inE Dx /=.
Qed.
End Preim.
Lemma card_partition : forall D P, partition P D -> #|D| = \sum_(A \in P) #|A|.
Proof. by move=> D P; case/and3P; move/eqP <-; move/eqnP. Qed.
Lemma card_uniform_partition : forall D P n,
{in P, forall A, #|A| = n} -> partition P D -> #|D| = #|P| * n.
Proof.
move=> D P n uniP; move/card_partition->.
rewrite -sum_nat_const; exact: eq_bigr.
Qed.
End Partitions.
Implicit Arguments trivIsetP [T P].
Implicit Arguments big_trivIset [T R nil law K F].
Implicit Arguments set_partition_big [T R nil law D K F].
Prenex Implicits cover trivIset partition cover_at trivIsetP.
Prenex Implicits preim_at preim_partition.
Section MaxSetMinSet.
Variable T : finType.
Notation sT := {set T}.
Implicit Types A B C : sT.
Implicit Type P : pred sT.
Definition minset P A := forallb B : sT, (B \subset A) ==> ((B == A) == P B).
Lemma minset_eq : forall P1 P2 A, P1 =1 P2 -> minset P1 A = minset P2 A.
Proof. by move=> P1 P2 A eP12; apply: eq_forallb => B; rewrite eP12. Qed.
Lemma minsetP : forall P A,
reflect ((P A) /\ (forall B, P B -> B \subset A -> B = A)) (minset P A).
Proof.
move=> P A; apply: (iffP forallP) => [minA | [PA minA] B].
split; first by have:= minA A; rewrite subxx eqxx /=; move/eqP.
by move=> B PB sBA; have:= minA B; rewrite PB sBA /=; do 2!move/eqP.
apply/implyP=> sBA; apply/eqP; apply/eqP/idP=> [-> //|]; move/minA; exact.
Qed.
Implicit Arguments minsetP [P A].
Lemma minsetp : forall P A, minset P A -> P A.
Proof. by move=> P A; case/minsetP. Qed.
Lemma minsetinf : forall P A B, minset P A -> P B -> B \subset A -> B = A.
Proof. by move=> P A B; case/minsetP=> _; exact. Qed.
Lemma ex_minset : forall P, (exists A, P A) -> {A | minset P A}.
Proof.
move=> P exP; pose pS n := [pred B | P B && (#|B| == n)].
pose p n := ~~ pred0b (pS n); have{exP}: exists n, p n.
by case: exP => A PA; exists #|A|; apply/existsP; exists A; rewrite PA /=.
case/ex_minnP=> n; move/pred0P; case: (pickP (pS n)) => // A.
case/andP=> PA; move/eqP=> <- {n} _ minA; exists A => //.
apply/minsetP; split=> // B PB sBA; apply/eqP; rewrite eqEcard sBA.
by apply: minA; apply/pred0Pn; exists B; rewrite /= PB /=.
Qed.
Lemma minset_exists : forall P C, P C -> {A | minset P A & A \subset C}.
Proof.
move=> P C PC; have{PC}: exists A, P A && (A \subset C).
by exists C; rewrite PC /=.
case/ex_minset=> A; case/minsetP; case/andP=> PA sAC minA; exists A => //.
apply/minsetP; split=> // B PB sBA; apply: minA => //.
by rewrite PB (subset_trans sBA).
Qed.
Definition maxset P A := minset (fun B => locked P (~: B)) (~: A).
Lemma maxset_eq : forall P1 P2 A, P1 =1 P2 -> maxset P1 A = maxset P2 A.
Proof.
by move=> P1 P2 A eP12; apply: minset_eq=> x /=; rewrite -!lock eP12.
Qed.
Lemma maxminset : forall P A, maxset P A = minset [pred B | P (~: B)] (~: A).
Proof. by unlock maxset. Qed.
Lemma minmaxset : forall P A, minset P A = maxset [pred B | P (~: B)] (~: A).
Proof.
move=> P A; unlock maxset; rewrite setCK; apply: minset_eq => B /=.
by rewrite setCK.
Qed.
Lemma maxsetP : forall P A,
reflect ((P A) /\ (forall B, P B -> A \subset B -> B = A)) (maxset P A).
Proof.
move=> P A; apply: (iffP minsetP); rewrite ?setCK -lock => [] [PA minA].
by split=> // B PB sAB; rewrite -[B]setCK [~: B]minA (setCK, setCS).
by split=> // B PB' sBA'; rewrite -(minA _ PB') -1?setCS setCK.
Qed.
Lemma maxsetp : forall P A, maxset P A -> P A.
Proof. by move=> P A; case/maxsetP. Qed.
Lemma maxsetsup : forall P A B, maxset P A -> P B -> A \subset B -> B = A.
Proof. by move=> P A B; case/maxsetP=> _; exact. Qed.
Lemma ex_maxset : forall P, (exists A, P A) -> {A | maxset P A}.
Proof.
move=> P exP; have{exP}: exists A, P (~: A).
by case: exP => A PA; exists (~: A); rewrite setCK.
by case/ex_minset=> A minA; exists (~: A); unlock maxset; rewrite setCK.
Qed.
Lemma maxset_exists : forall P C, P C -> {A : sT | maxset P A & C \subset A}.
Proof.
move=> P C PC; pose P' B := P (~: B); have: P' (~: C) by rewrite /P' setCK.
case/minset_exists=> B; rewrite -[B]setCK setCS.
by exists (~: B); unlock maxset.
Qed.
End MaxSetMinSet.
Implicit Arguments minsetP [T P A].
Implicit Arguments maxsetP [T P A].
Prenex Implicits minset maxset minsetP maxsetP.