CanberraMetric.cpp

Go to the documentation of this file.
00001 /*
00002  * This program is free software; you can redistribute it and/or modify
00003  * it under the terms of the GNU General Public License as published by
00004  * the Free Software Foundation; either version 3 of the License, or
00005  * (at your option) any later version.
00006  *
00007  * Written (W) 2006-2009 Christian Gehl
00008  * Copyright (C) 2006-2009 Fraunhofer Institute FIRST
00009  */
00010 
00011 #include "lib/config.h"
00012 #include "lib/common.h"
00013 #include "lib/io.h"
00014 #include "distance/CanberraMetric.h"
00015 #include "features/Features.h"
00016 #include "features/SimpleFeatures.h"
00017 
00018 CCanberraMetric::CCanberraMetric()
00019 : CSimpleDistance<float64_t>()
00020 {
00021 }
00022 
00023 CCanberraMetric::CCanberraMetric(CSimpleFeatures<float64_t>* l, CSimpleFeatures<float64_t>* r)
00024 : CSimpleDistance<float64_t>()
00025 {
00026     init(l, r);
00027 }
00028 
00029 CCanberraMetric::~CCanberraMetric()
00030 {
00031     cleanup();
00032 }
00033 
00034 bool CCanberraMetric::init(CFeatures* l, CFeatures* r)
00035 {
00036     bool result=CSimpleDistance<float64_t>::init(l,r);
00037 
00038     return result;
00039 }
00040 
00041 void CCanberraMetric::cleanup()
00042 {
00043 }
00044 
00045 bool CCanberraMetric::load_init(FILE* src)
00046 {
00047     return false;
00048 }
00049 
00050 bool CCanberraMetric::save_init(FILE* dest)
00051 {
00052     return false;
00053 }
00054 
00055 float64_t CCanberraMetric::compute(int32_t idx_a, int32_t idx_b)
00056 {
00057 
00058     int32_t alen, blen;
00059     bool afree, bfree;
00060 
00061     float64_t* avec=
00062         ((CSimpleFeatures<float64_t>*) lhs)->get_feature_vector(idx_a, alen, afree);
00063     float64_t* bvec=
00064         ((CSimpleFeatures<float64_t>*) rhs)->get_feature_vector(idx_b, blen, bfree);
00065 
00066     ASSERT(alen==blen);
00067 
00068     float64_t absTmp = 0;
00069     float64_t result=0;
00070     {
00071         for (int32_t i=0; i<alen; i++)
00072         {
00073             absTmp=fabs(avec[i])+fabs(bvec[i]);
00074             if(absTmp!=0)
00075                 result+=fabs(avec[i]-fabs(bvec[i]))/absTmp;
00076         }
00077 
00078     }
00079 
00080     ((CSimpleFeatures<float64_t>*) lhs)->free_feature_vector(avec, idx_a, afree);
00081     ((CSimpleFeatures<float64_t>*) rhs)->free_feature_vector(bvec, idx_b, bfree);
00082 
00083     return result;
00084 }

SHOGUN Machine Learning Toolbox - Documentation