LinearKernel.h

Go to the documentation of this file.
00001 /*
00002  * This program is free software; you can redistribute it and/or modify
00003  * it under the terms of the GNU General Public License as published by
00004  * the Free Software Foundation; either version 3 of the License, or
00005  * (at your option) any later version.
00006  *
00007  * Written (W) 1999-2009 Soeren Sonnenburg
00008  * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
00009  */
00010 
00011 #ifndef _LINEARKERNEL_H___
00012 #define _LINEARKERNEL_H___
00013 
00014 #include "lib/common.h"
00015 #include "kernel/SimpleKernel.h"
00016 #include "features/SimpleFeatures.h"
00017 
00026 class CLinearKernel: public CSimpleKernel<float64_t>
00027 {
00028     public:
00031         CLinearKernel();
00032 
00038         CLinearKernel(CSimpleFeatures<float64_t>* l, CSimpleFeatures<float64_t>* r);
00039 
00040         virtual ~CLinearKernel();
00041 
00048         virtual bool init(CFeatures* l, CFeatures* r);
00049 
00051         virtual void cleanup();
00052 
00058         virtual bool load_init(FILE* src);
00059 
00065         virtual bool save_init(FILE* dest);
00066 
00071         virtual EKernelType get_kernel_type() { return K_LINEAR; }
00072 
00077         virtual const char* get_name() const { return "Linear"; }
00078 
00087         virtual bool init_optimization(
00088             int32_t num_suppvec, int32_t* sv_idx, float64_t* alphas);
00089 
00094         virtual bool delete_optimization();
00095 
00101         virtual float64_t compute_optimized(int32_t idx);
00102 
00104         virtual void clear_normal();
00105 
00111         virtual void add_to_normal(int32_t idx, float64_t weight);
00112 
00118         inline const float64_t* get_normal(int32_t& len)
00119         {
00120             if (lhs && normal)
00121             {
00122                 len = ((CSimpleFeatures<float64_t>*) lhs)->get_num_features();
00123                 return normal;
00124             }
00125             else
00126             {
00127                 len = 0;
00128                 return NULL;
00129             }
00130         }
00131 
00137         inline void get_w(float64_t** dst_w, int32_t* dst_dims)
00138         {
00139             ASSERT(lhs && normal);
00140             int32_t len = ((CSimpleFeatures<float64_t>*) lhs)->get_num_features();
00141             ASSERT(dst_w && dst_dims);
00142             *dst_dims=len;
00143             *dst_w=(float64_t*) malloc(sizeof(float64_t)*(*dst_dims));
00144             ASSERT(*dst_w);
00145             memcpy(*dst_w, normal, sizeof(float64_t) * (*dst_dims));
00146         }
00147 
00153         inline void set_w(float64_t* src_w, int32_t src_w_dim)
00154         {
00155             ASSERT(lhs && src_w_dim==((CSimpleFeatures<float64_t>*) lhs)->get_num_features());
00156             clear_normal();
00157             memcpy(normal, src_w, sizeof(float64_t) * src_w_dim);
00158         }
00159 
00160     protected:
00169         virtual float64_t compute(int32_t idx_a, int32_t idx_b);
00170 
00171     protected:
00173         float64_t* normal;
00175         int32_t normal_length;
00176 };
00177 
00178 #endif /* _LINEARKERNEL_H__ */

SHOGUN Machine Learning Toolbox - Documentation