WDSVMOcas.h

Go to the documentation of this file.
00001 /*
00002  * This program is free software; you can redistribute it and/or modify
00003  * it under the terms of the GNU General Public License as published by
00004  * the Free Software Foundation; either version 3 of the License, or
00005  * (at your option) any later version.
00006  *
00007  * Written (W) 2007-2008 Vojtech Franc
00008  * Written (W) 2007-2009 Soeren Sonnenburg
00009  * Copyright (C) 2007-2009 Fraunhofer Institute FIRST and Max-Planck-Society
00010  */
00011 
00012 #ifndef _WDSVMOCAS_H___
00013 #define _WDSVMOCAS_H___
00014 
00015 #include "lib/common.h"
00016 #include "classifier/Classifier.h"
00017 #include "classifier/svm/SVMOcas.h"
00018 #include "features/StringFeatures.h"
00019 #include "features/Labels.h"
00020 
00021 namespace shogun
00022 {
00023 template <class ST> class CStringFeatures;
00024 
00026 class CWDSVMOcas : public CClassifier
00027 {
00028     public:
00033         CWDSVMOcas(E_SVM_TYPE type);
00034 
00043         CWDSVMOcas(
00044             float64_t C, int32_t d, int32_t from_d,
00045             CStringFeatures<uint8_t>* traindat, CLabels* trainlab);
00046         virtual ~CWDSVMOcas();
00047 
00052         virtual inline EClassifierType get_classifier_type() { return CT_WDSVMOCAS; }
00053 
00062         virtual bool train(CFeatures* data=NULL);
00063 
00070         inline void set_C(float64_t c_neg, float64_t c_pos) { C1=c_neg; C2=c_pos; }
00071 
00076         inline float64_t get_C1() { return C1; }
00077 
00082         inline float64_t get_C2() { return C2; }
00083 
00088         inline void set_epsilon(float64_t eps) { epsilon=eps; }
00089 
00094         inline float64_t get_epsilon() { return epsilon; }
00095 
00100         inline void set_features(CStringFeatures<uint8_t>* feat)
00101         {
00102             SG_UNREF(features);
00103             SG_REF(feat);
00104             features=feat;
00105         }
00106 
00111         inline CStringFeatures<uint8_t>* get_features()
00112         {
00113             SG_REF(features);
00114             return features;
00115         }
00116 
00121         inline void set_bias_enabled(bool enable_bias) { use_bias=enable_bias; }
00122 
00127         inline bool get_bias_enabled() { return use_bias; }
00128 
00133         inline void set_bufsize(int32_t sz) { bufsize=sz; }
00134 
00139         inline int32_t get_bufsize() { return bufsize; }
00140 
00146         inline void set_degree(int32_t d, int32_t from_d)
00147         {
00148             degree=d;
00149             from_degree=from_d;
00150         }
00151 
00156         inline int32_t get_degree() { return degree; }
00157 
00162         CLabels* classify();
00163 
00169         virtual CLabels* classify(CFeatures* data);
00170 
00176         inline virtual float64_t classify_example(int32_t num)
00177         {
00178             ASSERT(features);
00179             if (!wd_weights)
00180                 set_wd_weights();
00181 
00182             int32_t len=0;
00183             float64_t sum=0;
00184             bool free_vec;
00185             uint8_t* vec=features->get_feature_vector(num, len, free_vec);
00186             //SG_INFO("len %d, string_length %d\n", len, string_length);
00187             ASSERT(len==string_length);
00188 
00189             for (int32_t j=0; j<string_length; j++)
00190             {
00191                 int32_t offs=w_dim_single_char*j;
00192                 int32_t val=0;
00193                 for (int32_t k=0; (j+k<string_length) && (k<degree); k++)
00194                 {
00195                     val=val*alphabet_size + vec[j+k];
00196                     sum+=wd_weights[k] * w[offs+val];
00197                     offs+=w_offsets[k];
00198                 }
00199             }
00200             features->free_feature_vector(vec, len, free_vec);
00201             return sum/normalization_const;
00202         }
00203 
00205         inline void set_normalization_const()
00206         {
00207             ASSERT(features);
00208             normalization_const=0;
00209             for (int32_t i=0; i<degree; i++)
00210                 normalization_const+=(string_length-i)*wd_weights[i]*wd_weights[i];
00211 
00212             normalization_const=CMath::sqrt(normalization_const);
00213             SG_DEBUG("normalization_const:%f\n", normalization_const);
00214         }
00215 
00220         inline float64_t get_normalization_const() { return normalization_const; }
00221 
00222 
00223     protected:
00228         int32_t set_wd_weights();
00229 
00238         static void compute_W(
00239             float64_t *sq_norm_W, float64_t *dp_WoldW, float64_t *alpha,
00240             uint32_t nSel, void* ptr );
00241 
00248         static float64_t update_W(float64_t t, void* ptr );
00249 
00255         static void* add_new_cut_helper(void* ptr);
00256 
00265         static void add_new_cut(
00266             float64_t *new_col_H, uint32_t *new_cut, uint32_t cut_length,
00267             uint32_t nSel, void* ptr );
00268 
00274         static void* compute_output_helper(void* ptr);
00275 
00281         static void compute_output( float64_t *output, void* ptr );
00282 
00289         static void sort( float64_t* vals, uint32_t* idx, uint32_t size);
00290 
00292         inline virtual const char* get_name() const { return "WDSVMOcas"; }
00293 
00294     protected:
00296         CStringFeatures<uint8_t>* features;
00298         bool use_bias;
00300         int32_t bufsize;
00302         float64_t C1;
00304         float64_t C2;
00306         float64_t epsilon;
00308         E_SVM_TYPE method;
00309 
00311         int32_t degree;
00313         int32_t from_degree;
00315         float32_t* wd_weights;
00317         int32_t num_vec;
00319         int32_t string_length;
00321         int32_t alphabet_size;
00322 
00324         float64_t normalization_const;
00325 
00327         float64_t bias;
00329         float64_t old_bias;
00331         int32_t* w_offsets;
00333         int32_t w_dim;
00335         int32_t w_dim_single_char;
00337         float32_t* w;
00339         float32_t* old_w;
00341         float64_t* lab;
00342 
00344         float32_t** cuts;
00346         float64_t* cp_bias;
00347 };
00348 }
00349 #endif
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines

SHOGUN Machine Learning Toolbox - Documentation