Reference documentation for deal.II version 8.1.0
Classes | Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | Private Attributes | Friends | List of all members
FEValuesBase< dim, spacedim > Class Template Reference

#include <fe_values.h>

Inheritance diagram for FEValuesBase< dim, spacedim >:
[legend]

Classes

class  CellIterator
 

Public Member Functions

 FEValuesBase (const unsigned int n_q_points, const unsigned int dofs_per_cell, const UpdateFlags update_flags, const Mapping< dim, spacedim > &mapping, const FiniteElement< dim, spacedim > &fe)
 
 ~FEValuesBase ()
 
 DeclException1 (ExcAccessToUninitializedField, char *,<< ("You are requesting information from an FEValues/FEFaceValues/FESubfaceValues ""object for which this kind of information has not been computed. What ""information these objects compute is determined by the update_* flags you ""pass to the constructor. Here, the operation you are attempting requires ""the <")<< arg1<< "> flag to be set, but it was apparently not specified upon construction.")
 
 DeclException0 (ExcCannotInitializeField)
 
 DeclException0 (ExcInvalidUpdateFlag)
 
 DeclException0 (ExcFEDontMatch)
 
 DeclException1 (ExcShapeFunctionNotPrimitive, int,<< "The shape function with index "<< arg1<< " is not primitive, i.e. it is vector-valued and "<< "has more than one non-zero vector component. This "<< "function cannot be called for these shape functions. "<< "Maybe you want to use the same function with the "<< "_component suffix?")
 
 DeclException0 (ExcFENotPrimitive)
 
ShapeAccess Access to shape function values
const doubleshape_value (const unsigned int function_no, const unsigned int point_no) const
 
double shape_value_component (const unsigned int function_no, const unsigned int point_no, const unsigned int component) const
 
const Tensor< 1, spacedim > & shape_grad (const unsigned int function_no, const unsigned int quadrature_point) const
 
Tensor< 1, spacedim > shape_grad_component (const unsigned int function_no, const unsigned int point_no, const unsigned int component) const
 
const Tensor< 2, spacedim > & shape_hessian (const unsigned int function_no, const unsigned int point_no) const
 
const Tensor< 2, spacedim > & shape_2nd_derivative (const unsigned int function_no, const unsigned int point_no) const DEAL_II_DEPRECATED
 
Tensor< 2, spacedim > shape_hessian_component (const unsigned int function_no, const unsigned int point_no, const unsigned int component) const
 
Tensor< 2, spacedim > shape_2nd_derivative_component (const unsigned int function_no, const unsigned int point_no, const unsigned int component) const DEAL_II_DEPRECATED
 
Access to values of global finite element fields
template<class InputVector , typename number >
void get_function_values (const InputVector &fe_function, std::vector< number > &values) const
 
template<class InputVector , typename number >
void get_function_values (const InputVector &fe_function, std::vector< Vector< number > > &values) const
 
template<class InputVector , typename number >
void get_function_values (const InputVector &fe_function, const VectorSlice< const std::vector< types::global_dof_index > > &indices, std::vector< number > &values) const
 
template<class InputVector , typename number >
void get_function_values (const InputVector &fe_function, const VectorSlice< const std::vector< types::global_dof_index > > &indices, std::vector< Vector< number > > &values) const
 
template<class InputVector >
void get_function_values (const InputVector &fe_function, const VectorSlice< const std::vector< types::global_dof_index > > &indices, VectorSlice< std::vector< std::vector< double > > > values, const bool quadrature_points_fastest) const
 
Access to derivatives of global finite element fields
template<class InputVector >
void get_function_gradients (const InputVector &fe_function, std::vector< Tensor< 1, spacedim > > &gradients) const
 
template<class InputVector >
void get_function_gradients (const InputVector &fe_function, std::vector< std::vector< Tensor< 1, spacedim > > > &gradients) const
 
template<class InputVector >
void get_function_gradients (const InputVector &fe_function, const VectorSlice< const std::vector< types::global_dof_index > > &indices, std::vector< Tensor< 1, spacedim > > &gradients) const
 
template<class InputVector >
void get_function_gradients (const InputVector &fe_function, const VectorSlice< const std::vector< types::global_dof_index > > &indices, VectorSlice< std::vector< std::vector< Tensor< 1, spacedim > > > > gradients, bool quadrature_points_fastest=false) const
 
template<class InputVector >
void get_function_grads (const InputVector &fe_function, std::vector< Tensor< 1, spacedim > > &gradients) const DEAL_II_DEPRECATED
 
template<class InputVector >
void get_function_grads (const InputVector &fe_function, std::vector< std::vector< Tensor< 1, spacedim > > > &gradients) const DEAL_II_DEPRECATED
 
template<class InputVector >
void get_function_grads (const InputVector &fe_function, const VectorSlice< const std::vector< types::global_dof_index > > &indices, std::vector< Tensor< 1, spacedim > > &gradients) const DEAL_II_DEPRECATED
 
template<class InputVector >
void get_function_grads (const InputVector &fe_function, const VectorSlice< const std::vector< types::global_dof_index > > &indices, std::vector< std::vector< Tensor< 1, spacedim > > > &gradients, bool quadrature_points_fastest=false) const DEAL_II_DEPRECATED
 
Access to second derivatives (Hessian matrices and Laplacians) of global finite element fields
template<class InputVector >
void get_function_hessians (const InputVector &fe_function, std::vector< Tensor< 2, spacedim > > &hessians) const
 
template<class InputVector >
void get_function_hessians (const InputVector &fe_function, std::vector< std::vector< Tensor< 2, spacedim > > > &hessians, bool quadrature_points_fastest=false) const
 
template<class InputVector >
void get_function_hessians (const InputVector &fe_function, const VectorSlice< const std::vector< types::global_dof_index > > &indices, std::vector< Tensor< 2, spacedim > > &hessians) const
 
template<class InputVector >
void get_function_hessians (const InputVector &fe_function, const VectorSlice< const std::vector< types::global_dof_index > > &indices, VectorSlice< std::vector< std::vector< Tensor< 2, spacedim > > > > hessians, bool quadrature_points_fastest=false) const
 
template<class InputVector >
void get_function_2nd_derivatives (const InputVector &, std::vector< Tensor< 2, spacedim > > &) const DEAL_II_DEPRECATED
 
template<class InputVector >
void get_function_2nd_derivatives (const InputVector &, std::vector< std::vector< Tensor< 2, spacedim > > > &, bool=false) const DEAL_II_DEPRECATED
 
template<class InputVector , typename number >
void get_function_laplacians (const InputVector &fe_function, std::vector< number > &laplacians) const
 
template<class InputVector , typename number >
void get_function_laplacians (const InputVector &fe_function, std::vector< Vector< number > > &laplacians) const
 
template<class InputVector , typename number >
void get_function_laplacians (const InputVector &fe_function, const VectorSlice< const std::vector< types::global_dof_index > > &indices, std::vector< number > &laplacians) const
 
template<class InputVector , typename number >
void get_function_laplacians (const InputVector &fe_function, const VectorSlice< const std::vector< types::global_dof_index > > &indices, std::vector< Vector< number > > &laplacians) const
 
template<class InputVector , typename number >
void get_function_laplacians (const InputVector &fe_function, const VectorSlice< const std::vector< types::global_dof_index > > &indices, std::vector< std::vector< number > > &laplacians, bool quadrature_points_fastest=false) const
 
Geometry of the cell
const Point< spacedim > & quadrature_point (const unsigned int i) const
 
const std::vector< Point< spacedim > > & get_quadrature_points () const
 
double JxW (const unsigned int quadrature_point) const
 
const std::vector< double > & get_JxW_values () const
 
const DerivativeForm< 1, dim, spacedim > & jacobian (const unsigned int quadrature_point) const
 
const std::vector< DerivativeForm< 1, dim, spacedim > > & get_jacobians () const
 
const DerivativeForm< 2, dim, spacedim > & jacobian_grad (const unsigned int quadrature_point) const
 
const std::vector< DerivativeForm< 2, dim, spacedim > > & get_jacobian_grads () const
 
const DerivativeForm< 1, spacedim, dim > & inverse_jacobian (const unsigned int quadrature_point) const
 
const std::vector< DerivativeForm< 1, spacedim, dim > > & get_inverse_jacobians () const
 
const Point< spacedim > & normal_vector (const unsigned int i) const
 
const std::vector< Point< spacedim > > & get_normal_vectors () const
 
void transform (std::vector< Tensor< 1, spacedim > > &transformed, const std::vector< Tensor< 1, dim > > &original, MappingType mapping) const
 
const Point< spacedim > & cell_normal_vector (const unsigned int i) const DEAL_II_DEPRECATED
 
const std::vector< Point< spacedim > > & get_cell_normal_vectors () const DEAL_II_DEPRECATED
 
Extractors Methods to extract individual components
const FEValuesViews::Scalar< dim, spacedim > & operator[] (const FEValuesExtractors::Scalar &scalar) const
 
const FEValuesViews::Vector< dim, spacedim > & operator[] (const FEValuesExtractors::Vector &vector) const
 
const FEValuesViews::SymmetricTensor< 2, dim, spacedim > & operator[] (const FEValuesExtractors::SymmetricTensor< 2 > &tensor) const
 
const FEValuesViews::Tensor< 2, dim, spacedim > & operator[] (const FEValuesExtractors::Tensor< 2 > &tensor) const
 
Access to the raw data
const Mapping< dim, spacedim > & get_mapping () const
 
const FiniteElement< dim, spacedim > & get_fe () const
 
UpdateFlags get_update_flags () const
 
const Triangulation< dim, spacedim >::cell_iterator get_cell () const
 
CellSimilarity::Similarity get_cell_similarity () const
 
std::size_t memory_consumption () const
 
- Public Member Functions inherited from Subscriptor
 Subscriptor ()
 
 Subscriptor (const Subscriptor &)
 
virtual ~Subscriptor ()
 
Subscriptoroperator= (const Subscriptor &)
 
void subscribe (const char *identifier=0) const
 
void unsubscribe (const char *identifier=0) const
 
unsigned int n_subscriptions () const
 
void list_subscribers () const
 
 DeclException3 (ExcInUse, int, char *, std::string &,<< "Object of class "<< arg2<< " is still used by "<< arg1<< " other objects.\n"<< "(Additional information: "<< arg3<< ")\n"<< "Note the entry in the Frequently Asked Questions of "<< "deal.II (linked to from http://www.dealii.org/) for "<< "more information on what this error means.")
 
 DeclException2 (ExcNoSubscriber, char *, char *,<< "No subscriber with identifier \""<< arg2<< "\" did subscribe to this object of class "<< arg1)
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 

Public Attributes

const unsigned int n_quadrature_points
 
const unsigned int dofs_per_cell
 

Static Public Attributes

static const unsigned int dimension = dim
 
static const unsigned int space_dimension = spacedim
 

Protected Member Functions

void invalidate_present_cell ()
 
void maybe_invalidate_previous_present_cell (const typename Triangulation< dim, spacedim >::cell_iterator &cell)
 
UpdateFlags compute_update_flags (const UpdateFlags update_flags) const
 
void check_cell_similarity (const typename Triangulation< dim, spacedim >::cell_iterator &cell)
 
- Protected Member Functions inherited from FEValuesData< dim, spacedim >
void initialize (const unsigned int n_quadrature_points, const FiniteElement< dim, spacedim > &fe, const UpdateFlags flags)
 
- Protected Member Functions inherited from Subscriptor
 Subscriptor ()
 
 Subscriptor (const Subscriptor &)
 
virtual ~Subscriptor ()
 
Subscriptoroperator= (const Subscriptor &)
 
void subscribe (const char *identifier=0) const
 
void unsubscribe (const char *identifier=0) const
 
unsigned int n_subscriptions () const
 
void list_subscribers () const
 
 DeclException3 (ExcInUse, int, char *, std::string &,<< "Object of class "<< arg2<< " is still used by "<< arg1<< " other objects.\n"<< "(Additional information: "<< arg3<< ")\n"<< "Note the entry in the Frequently Asked Questions of "<< "deal.II (linked to from http://www.dealii.org/) for "<< "more information on what this error means.")
 
 DeclException2 (ExcNoSubscriber, char *, char *,<< "No subscriber with identifier \""<< arg2<< "\" did subscribe to this object of class "<< arg1)
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 

Protected Attributes

std::auto_ptr< const CellIteratorBase > present_cell
 
boost::signals2::connection tria_listener
 
const SmartPointer< const Mapping< dim, spacedim >, FEValuesBase< dim, spacedim > > mapping
 
const SmartPointer< const FiniteElement< dim, spacedim >, FEValuesBase< dim, spacedim > > fe
 
SmartPointer< typename Mapping< dim, spacedim >::InternalDataBase, FEValuesBase< dim, spacedim > > mapping_data
 
SmartPointer< typename Mapping< dim, spacedim >::InternalDataBase, FEValuesBase< dim, spacedim > > fe_data
 
CellSimilarity::Similarity cell_similarity
 
- Protected Attributes inherited from FEValuesData< dim, spacedim >
ShapeVector shape_values
 
GradientVector shape_gradients
 
HessianVector shape_hessians
 
std::vector< doubleJxW_values
 
std::vector< DerivativeForm< 1, dim, spacedim > > jacobians
 
std::vector< DerivativeForm< 2, dim, spacedim > > jacobian_grads
 
std::vector< DerivativeForm< 1, spacedim, dim > > inverse_jacobians
 
std::vector< Point< spacedim > > quadrature_points
 
std::vector< Point< spacedim > > normal_vectors
 
std::vector< Tensor< 1, spacedim > > boundary_forms
 
std::vector< unsigned intshape_function_to_row_table
 
UpdateFlags update_flags
 

Private Member Functions

 FEValuesBase (const FEValuesBase &)
 
FEValuesBaseoperator= (const FEValuesBase &)
 

Private Attributes

::internal::FEValuesViews::Cache< dim, spacedim > fe_values_views_cache
 

Friends

template<int , int >
class FEValuesViews::Scalar
 
template<int , int >
class FEValuesViews::Vector
 
template<int , int , int >
class FEValuesViews::SymmetricTensor
 
template<int , int , int >
class FEValuesViews::Tensor
 

Additional Inherited Members

- Protected Types inherited from FEValuesData< dim, spacedim >
typedef Table< 2, doubleShapeVector
 
typedef std::vector< std::vector< Tensor< 1, spacedim > > > GradientVector
 
typedef std::vector< std::vector< Tensor< 2, spacedim > > > HessianVector
 

Detailed Description

template<int dim, int spacedim>
class FEValuesBase< dim, spacedim >

FEValues, FEFaceValues and FESubfaceValues objects are interfaces to finite element and mapping classes on the one hand side, to cells and quadrature rules on the other side. They allow to evaluate values or derivatives of shape functions at the quadrature points of a quadrature formula when projected by a mapping from the unit cell onto a cell in real space. The reason for this abstraction is possible optimization: Depending on the type of finite element and mapping, some values can be computed once on the unit cell. Others must be computed on each cell, but maybe computation of several values at the same time offers ways for optimization. Since this interlay may be complex and depends on the actual finite element, it cannot be left to the applications programmer.

FEValues, FEFaceValues and FESubfaceValues provide only data handling: computations are left to objects of type Mapping and FiniteElement. These provide functions get_*_data and fill_*_values which are called by the constructor and reinit functions of FEValues*, respectively.

General usage

Usually, an object of FEValues* is used in integration loops over all cells of a triangulation (or faces of cells). To take full advantage of the optimization features, it should be constructed before the loop so that information that does not depend on the location and shape of cells can be computed once and for all (this includes, for example, the values of shape functions at quadrature points for the most common elements: we can evaluate them on the unit cell and they will be the same when mapped to the real cell). Then, in the loop over all cells, it must be re-initialized for each grid cell to compute that part of the information that changes depending on the actual cell (for example, the gradient of shape functions equals the gradient on the unit cell – which can be computed once and for all – times the Jacobian matrix of the mapping between unit and real cell, which needs to be recomputed for each cell).

A typical piece of code, adding up local contributions to the Laplace matrix looks like this:

FEValues values (mapping, finite_element, quadrature, flags);
for (cell = dof_handler.begin_active();
cell != dof_handler.end();
++cell)
{
values.reinit(cell);
for (unsigned int q=0; q<quadrature.size(); ++q)
for (unsigned int i=0; i<finite_element.dofs_per_cell; ++i)
for (unsigned int j=0; j<finite_element.dofs_per_cell; ++j)
A(i,j) += fe_values.shape_value(i,q) *
fe_values.shape_value(j,q) *
fe_values.JxW(q);
...
}

The individual functions used here are described below. Note that by design, the order of quadrature points used inside the FEValues object is the same as defined by the quadrature formula passed to the constructor of the FEValues object above.

Member functions

The functions of this class fall into different cathegories:

UpdateFlags

The UpdateFlags object handed to the constructor is used to determine which of the data fields to compute. This way, it is possible to avoid expensive computations of useless derivatives. In the beginning, these flags are processed through the functions Mapping::update_once(), Mapping::update_each(), FiniteElement::update_once() FiniteElement::update_each(). All the results are bit-wise or'd and determine the fields actually computed. This enables Mapping and FiniteElement to schedule auxiliary data fields for updating. Still, it is recommended to give all needed update flags to FEValues.

The mechanisms by which this class works is also discussed on the page on The interplay of UpdateFlags, Mapping and FiniteElement in FEValues.

Author
Wolfgang Bangerth, 1998, 2003, Guido Kanschat, 2001

Definition at line 27 of file vector_selector.h.

Constructor & Destructor Documentation

template<int dim, int spacedim>
FEValuesBase< dim, spacedim >::FEValuesBase ( const unsigned int  n_q_points,
const unsigned int  dofs_per_cell,
const UpdateFlags  update_flags,
const Mapping< dim, spacedim > &  mapping,
const FiniteElement< dim, spacedim > &  fe 
)

Constructor. Set up the array sizes with n_q_points quadrature points, dofs_per_cell trial functions per cell and with the given pattern to update the fields when the reinit function of the derived classes is called. The fields themselves are not set up, this must happen in the constructor of the derived class.

template<int dim, int spacedim>
FEValuesBase< dim, spacedim >::~FEValuesBase ( )

Destructor.

template<int dim, int spacedim>
FEValuesBase< dim, spacedim >::FEValuesBase ( const FEValuesBase< dim, spacedim > &  )
private

Copy constructor. Since objects of this class are not copyable, we make it private, and also do not implement it.

Member Function Documentation

template<int dim, int spacedim>
const double& FEValuesBase< dim, spacedim >::shape_value ( const unsigned int  function_no,
const unsigned int  point_no 
) const

Value of a shape function at a quadrature point on the cell, face or subface selected the last time the reinit function of the derived class was called.

If the shape function is vector-valued, then this returns the only non-zero component. If the shape function has more than one non-zero component (i.e. it is not primitive), then throw an exception of type ExcShapeFunctionNotPrimitive. In that case, use the shape_value_component() function.

Parameters
function_noNumber of the shape function to be evaluated. Note that this number runs from zero to dofs_per_cell, even in the case of an FEFaceValues or FESubfaceValues object.
point_noNumber of the quadrature point at which function is to be evaluated
template<int dim, int spacedim>
double FEValuesBase< dim, spacedim >::shape_value_component ( const unsigned int  function_no,
const unsigned int  point_no,
const unsigned int  component 
) const

Compute one vector component of the value of a shape function at a quadrature point. If the finite element is scalar, then only component zero is allowed and the return value equals that of the shape_value() function. If the finite element is vector valued but all shape functions are primitive (i.e. they are non-zero in only one component), then the value returned by shape_value() equals that of this function for exactly one component. This function is therefore only of greater interest if the shape function is not primitive, but then it is necessary since the other function cannot be used.

Parameters
function_noNumber of the shape function to be evaluated
point_noNumber of the quadrature point at which function is to be evaluated
componentvector component to be evaluated
template<int dim, int spacedim>
const Tensor<1,spacedim>& FEValuesBase< dim, spacedim >::shape_grad ( const unsigned int  function_no,
const unsigned int  quadrature_point 
) const

Compute the gradient of the function_noth shape function at the quadrature_pointth quadrature point with respect to real cell coordinates. If you want to get the derivative in one of the coordinate directions, use the appropriate function of the Tensor class to extract one component of the Tensor returned by this function. Since only a reference to the gradient's value is returned, there should be no major performance drawback.

If the shape function is vector-valued, then this returns the only non-zero component. If the shape function has more than one non-zero component (i.e. it is not primitive), then it will throw an exception of type ExcShapeFunctionNotPrimitive. In that case, use the shape_grad_component() function.

The same holds for the arguments of this function as for the shape_value() function.

template<int dim, int spacedim>
Tensor<1,spacedim> FEValuesBase< dim, spacedim >::shape_grad_component ( const unsigned int  function_no,
const unsigned int  point_no,
const unsigned int  component 
) const

Return one vector component of the gradient of a shape function at a quadrature point. If the finite element is scalar, then only component zero is allowed and the return value equals that of the shape_grad() function. If the finite element is vector valued but all shape functions are primitive (i.e. they are non-zero in only one component), then the value returned by shape_grad() equals that of this function for exactly one component. This function is therefore only of greater interest if the shape function is not primitive, but then it is necessary since the other function cannot be used.

The same holds for the arguments of this function as for the shape_value_component() function.

template<int dim, int spacedim>
const Tensor<2,spacedim>& FEValuesBase< dim, spacedim >::shape_hessian ( const unsigned int  function_no,
const unsigned int  point_no 
) const

Second derivatives of the function_noth shape function at the point_noth quadrature point with respect to real cell coordinates. If you want to get the derivatives in one of the coordinate directions, use the appropriate function of the Tensor class to extract one component. Since only a reference to the derivative values is returned, there should be no major performance drawback.

If the shape function is vector-valued, then this returns the only non-zero component. If the shape function has more than one non-zero component (i.e. it is not primitive), then throw an exception of type ExcShapeFunctionNotPrimitive. In that case, use the shape_grad_grad_component() function.

The same holds for the arguments of this function as for the shape_value() function.

template<int dim, int spacedim>
const Tensor<2,spacedim>& FEValuesBase< dim, spacedim >::shape_2nd_derivative ( const unsigned int  function_no,
const unsigned int  point_no 
) const
template<int dim, int spacedim>
Tensor<2,spacedim> FEValuesBase< dim, spacedim >::shape_hessian_component ( const unsigned int  function_no,
const unsigned int  point_no,
const unsigned int  component 
) const

Return one vector component of the gradient of a shape function at a quadrature point. If the finite element is scalar, then only component zero is allowed and the return value equals that of the shape_hessian() function. If the finite element is vector valued but all shape functions are primitive (i.e. they are non-zero in only one component), then the value returned by shape_hessian() equals that of this function for exactly one component. This function is therefore only of greater interest if the shape function is not primitive, but then it is necessary since the other function cannot be used.

The same holds for the arguments of this function as for the shape_value_component() function.

template<int dim, int spacedim>
Tensor<2,spacedim> FEValuesBase< dim, spacedim >::shape_2nd_derivative_component ( const unsigned int  function_no,
const unsigned int  point_no,
const unsigned int  component 
) const
template<int dim, int spacedim>
template<class InputVector , typename number >
void FEValuesBase< dim, spacedim >::get_function_values ( const InputVector &  fe_function,
std::vector< number > &  values 
) const

Returns the values of a finite element function restricted to the current cell, face or subface selected the last time the reinit function of the derived class was called, at the quadrature points.

If the present cell is not active then values are interpolated to the current cell and point values are computed from that.

This function may only be used if the finite element in use is a scalar one, i.e. has only one vector component. To get values of multi-component elements, there is another get_function_values() below, returning a vector of vectors of results.

Parameters
[in]fe_functionA vector of values that describes (globally) the finite element function that this function should evaluate at the quadrature points of the current cell.
[out]valuesThe values of the function specified by fe_function at the quadrature points of the current cell. The object is assume to already have the correct size.
Postcondition
values[q] will contain the value of the field described by fe_function at the $q$th quadrature point.
Note
The actual data type of the input vector may be either a Vector<T>, BlockVector<T>, or one of the sequential PETSc or Trilinos vector wrapper classes. It represents a global vector of DoF values associated with the DofHandler object with which this FEValues object was last initialized. Alternatively, if the vector argument is of type IndexSet, then the function is represented as one that is either zero or one, depending on whether a DoF index is in the set or not.
template<int dim, int spacedim>
template<class InputVector , typename number >
void FEValuesBase< dim, spacedim >::get_function_values ( const InputVector &  fe_function,
std::vector< Vector< number > > &  values 
) const

This function does the same as the other get_function_values(), but applied to multi-component (vector-valued) elements. The meaning of the arguments is as explained there.

Postcondition
values[q] is a vector of values of the field described by fe_function at the $q$th quadrature point. The size of the vector accessed by values[q] equals the number of components of the finite element, i.e. values[q](c) returns the value of the $c$th vector component at the $q$th quadrature point.
template<int dim, int spacedim>
template<class InputVector , typename number >
void FEValuesBase< dim, spacedim >::get_function_values ( const InputVector &  fe_function,
const VectorSlice< const std::vector< types::global_dof_index > > &  indices,
std::vector< number > &  values 
) const

Generate function values from an arbitrary vector.

This function offers the possibility to extract function values in quadrature points from vectors not corresponding to a whole discretization.

The vector indices corresponds to the degrees of freedom on a single cell. Its length may even be a multiple of the number of dofs per cell. Then, the vectors in value should allow for the same multiple of the components of the finite element.

You may want to use this function, if you want to access just a single block from a BlockVector, if you have a multi-level vector or if you already have a local representation of your finite element data.

template<int dim, int spacedim>
template<class InputVector , typename number >
void FEValuesBase< dim, spacedim >::get_function_values ( const InputVector &  fe_function,
const VectorSlice< const std::vector< types::global_dof_index > > &  indices,
std::vector< Vector< number > > &  values 
) const

Generate vector function values from an arbitrary vector.

This function offers the possibility to extract function values in quadrature points from vectors not corresponding to a whole discretization.

The vector indices corresponds to the degrees of freedom on a single cell. Its length may even be a multiple of the number of dofs per cell. Then, the vectors in value should allow for the same multiple of the components of the finite element.

You may want to use this function, if you want to access just a single block from a BlockVector, if you have a multi-level vector or if you already have a local representation of your finite element data.

Since this function allows for fairly general combinations of argument sizes, be aware that the checks on the arguments may not detect errors.

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_values ( const InputVector &  fe_function,
const VectorSlice< const std::vector< types::global_dof_index > > &  indices,
VectorSlice< std::vector< std::vector< double > > >  values,
const bool  quadrature_points_fastest 
) const

Generate vector function values from an arbitrary vector.

This function offers the possibility to extract function values in quadrature points from vectors not corresponding to a whole discretization.

The vector indices corresponds to the degrees of freedom on a single cell. Its length may even be a multiple of the number of dofs per cell. Then, the vectors in value should allow for the same multiple of the components of the finite element.

Depending on the value of the last argument, the outer vector of values has either the length of the quadrature rule (quadrature_points_fastest == false) or the length of components to be filled quadrature_points_fastest == true. If p is the current quadrature point number and i is the vector component of the solution desired, the access to values is values[p][i] if quadrature_points_fastest == false, and values[i][p] otherwise.

You may want to use this function, if you want to access just a single block from a BlockVector, if you have a multi-level vector or if you already have a local representation of your finite element data.

Since this function allows for fairly general combinations of argument sizes, be aware that the checks on the arguments may not detect errors.

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_gradients ( const InputVector &  fe_function,
std::vector< Tensor< 1, spacedim > > &  gradients 
) const

Compute the gradients of a finite element at the quadrature points of a cell. This function is the equivalent of the corresponding get_function_values() function (see there for more information) but evaluates the finite element field's gradient instead of its value.

This function may only be used if the finite element in use is a scalar one, i.e. has only one vector component. There is a corresponding function of the same name for vector-valued finite elements.

Parameters
[in]fe_functionA vector of values that describes (globally) the finite element function that this function should evaluate at the quadrature points of the current cell.
[out]gradientsThe gradients of the function specified by fe_function at the quadrature points of the current cell. The gradients are computed in real space (as opposed to on the unit cell). The object is assume to already have the correct size.
Postcondition
gradients[q] will contain the gradient of the field described by fe_function at the $q$th quadrature point. gradients[q][d] represents the derivative in coordinate direction $d$ at quadrature point $q$.
Note
The actual data type of the input vector may be either a Vector<T>, BlockVector<T>, or one of the sequential PETSc or Trilinos vector wrapper classes. It represents a global vector of DoF values associated with the DofHandler object with which this FEValues object was last initialized. Alternatively, if the vector argument is of type IndexSet, then the function is represented as one that is either zero or one, depending on whether a DoF index is in the set or not.
template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_gradients ( const InputVector &  fe_function,
std::vector< std::vector< Tensor< 1, spacedim > > > &  gradients 
) const

This function does the same as the other get_function_gradients(), but applied to multi-component (vector-valued) elements. The meaning of the arguments is as explained there.

Postcondition
gradients[q] is a vector of gradients of the field described by fe_function at the $q$th quadrature point. The size of the vector accessed by gradients[q] equals the number of components of the finite element, i.e. gradients[q][c] returns the gradient of the $c$th vector component at the $q$th quadrature point. Consequently, gradients[q][c][d] is the derivative in coordinate direction $d$ of the $c$th vector component of the vector field at quadrature point $q$ of the current cell.
template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_gradients ( const InputVector &  fe_function,
const VectorSlice< const std::vector< types::global_dof_index > > &  indices,
std::vector< Tensor< 1, spacedim > > &  gradients 
) const

Function gradient access with more flexibility. see get_function_values() with corresponding arguments.

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_gradients ( const InputVector &  fe_function,
const VectorSlice< const std::vector< types::global_dof_index > > &  indices,
VectorSlice< std::vector< std::vector< Tensor< 1, spacedim > > > >  gradients,
bool  quadrature_points_fastest = false 
) const

Function gradient access with more flexibility. see get_function_values() with corresponding arguments.

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_grads ( const InputVector &  fe_function,
std::vector< Tensor< 1, spacedim > > &  gradients 
) const
template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_grads ( const InputVector &  fe_function,
std::vector< std::vector< Tensor< 1, spacedim > > > &  gradients 
) const
template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_grads ( const InputVector &  fe_function,
const VectorSlice< const std::vector< types::global_dof_index > > &  indices,
std::vector< Tensor< 1, spacedim > > &  gradients 
) const
template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_grads ( const InputVector &  fe_function,
const VectorSlice< const std::vector< types::global_dof_index > > &  indices,
std::vector< std::vector< Tensor< 1, spacedim > > > &  gradients,
bool  quadrature_points_fastest = false 
) const
template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_hessians ( const InputVector &  fe_function,
std::vector< Tensor< 2, spacedim > > &  hessians 
) const

Compute the tensor of second derivatives of a finite element at the quadrature points of a cell. This function is the equivalent of the corresponding get_function_values() function (see there for more information) but evaluates the finite element field's second derivatives instead of its value.

This function may only be used if the finite element in use is a scalar one, i.e. has only one vector component. There is a corresponding function of the same name for vector-valued finite elements.

Parameters
[in]fe_functionA vector of values that describes (globally) the finite element function that this function should evaluate at the quadrature points of the current cell.
[out]hessiansThe Hessians of the function specified by fe_function at the quadrature points of the current cell. The Hessians are computed in real space (as opposed to on the unit cell). The object is assume to already have the correct size.
Postcondition
hessians[q] will contain the Hessian of the field described by fe_function at the $q$th quadrature point. gradients[q][i][j] represents the $(i,j)$th component of the matrix of second derivatives at quadrature point $q$.
Note
The actual data type of the input vector may be either a Vector<T>, BlockVector<T>, or one of the sequential PETSc or Trilinos vector wrapper classes. It represents a global vector of DoF values associated with the DofHandler object with which this FEValues object was last initialized. Alternatively, if the vector argument is of type IndexSet, then the function is represented as one that is either zero or one, depending on whether a DoF index is in the set or not.
template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_hessians ( const InputVector &  fe_function,
std::vector< std::vector< Tensor< 2, spacedim > > > &  hessians,
bool  quadrature_points_fastest = false 
) const

This function does the same as the other get_function_hessians(), but applied to multi-component (vector-valued) elements. The meaning of the arguments is as explained there.

Postcondition
hessians[q] is a vector of Hessians of the field described by fe_function at the $q$th quadrature point. The size of the vector accessed by hessians[q] equals the number of components of the finite element, i.e. hessians[q][c] returns the Hessian of the $c$th vector component at the $q$th quadrature point. Consequently, values[q][c][i][j] is the $(i,j)$th component of the matrix of second derivatives of the $c$th vector component of the vector field at quadrature point $q$ of the current cell.
template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_hessians ( const InputVector &  fe_function,
const VectorSlice< const std::vector< types::global_dof_index > > &  indices,
std::vector< Tensor< 2, spacedim > > &  hessians 
) const

Access to the second derivatives of a function with more flexibility. see get_function_values() with corresponding arguments.

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_hessians ( const InputVector &  fe_function,
const VectorSlice< const std::vector< types::global_dof_index > > &  indices,
VectorSlice< std::vector< std::vector< Tensor< 2, spacedim > > > >  hessians,
bool  quadrature_points_fastest = false 
) const

Access to the second derivatives of a function with more flexibility. see get_function_values() with corresponding arguments.

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_2nd_derivatives ( const InputVector &  ,
std::vector< Tensor< 2, spacedim > > &   
) const
template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_2nd_derivatives ( const InputVector &  ,
std::vector< std::vector< Tensor< 2, spacedim > > > &  ,
bool  = false 
) const
template<int dim, int spacedim>
template<class InputVector , typename number >
void FEValuesBase< dim, spacedim >::get_function_laplacians ( const InputVector &  fe_function,
std::vector< number > &  laplacians 
) const

Compute the (scalar) Laplacian (i.e. the trace of the tensor of second derivatives) of a finite element at the quadrature points of a cell. This function is the equivalent of the corresponding get_function_values() function (see there for more information) but evaluates the finite element field's second derivatives instead of its value.

This function may only be used if the finite element in use is a scalar one, i.e. has only one vector component. There is a corresponding function of the same name for vector-valued finite elements.

Parameters
[in]fe_functionA vector of values that describes (globally) the finite element function that this function should evaluate at the quadrature points of the current cell.
[out]laplaciansThe Laplacians of the function specified by fe_function at the quadrature points of the current cell. The Laplacians are computed in real space (as opposed to on the unit cell). The object is assume to already have the correct size.
Postcondition
laplacians[q] will contain the Laplacian of the field described by fe_function at the $q$th quadrature point. gradients[q][i][j] represents the $(i,j)$th component of the matrix of second derivatives at quadrature point $q$.
For each component of the output vector, there holds laplacians[q]=trace(hessians[q]), where hessians would be the output of the get_function_hessians() function.
Note
The actual data type of the input vector may be either a Vector<T>, BlockVector<T>, or one of the sequential PETSc or Trilinos vector wrapper classes. It represents a global vector of DoF values associated with the DofHandler object with which this FEValues object was last initialized. Alternatively, if the vector argument is of type IndexSet, then the function is represented as one that is either zero or one, depending on whether a DoF index is in the set or not.
template<int dim, int spacedim>
template<class InputVector , typename number >
void FEValuesBase< dim, spacedim >::get_function_laplacians ( const InputVector &  fe_function,
std::vector< Vector< number > > &  laplacians 
) const

This function does the same as the other get_function_laplacians(), but applied to multi-component (vector-valued) elements. The meaning of the arguments is as explained there.

Postcondition
laplacians[q] is a vector of Laplacians of the field described by fe_function at the $q$th quadrature point. The size of the vector accessed by laplacians[q] equals the number of components of the finite element, i.e. laplacians[q][c] returns the Laplacian of the $c$th vector component at the $q$th quadrature point.
For each component of the output vector, there holds laplacians[q][c]=trace(hessians[q][c]), where hessians would be the output of the get_function_hessians() function.
template<int dim, int spacedim>
template<class InputVector , typename number >
void FEValuesBase< dim, spacedim >::get_function_laplacians ( const InputVector &  fe_function,
const VectorSlice< const std::vector< types::global_dof_index > > &  indices,
std::vector< number > &  laplacians 
) const

Access to the second derivatives of a function with more flexibility. see get_function_values() with corresponding arguments.

template<int dim, int spacedim>
template<class InputVector , typename number >
void FEValuesBase< dim, spacedim >::get_function_laplacians ( const InputVector &  fe_function,
const VectorSlice< const std::vector< types::global_dof_index > > &  indices,
std::vector< Vector< number > > &  laplacians 
) const

Access to the second derivatives of a function with more flexibility. see get_function_values() with corresponding arguments.

template<int dim, int spacedim>
template<class InputVector , typename number >
void FEValuesBase< dim, spacedim >::get_function_laplacians ( const InputVector &  fe_function,
const VectorSlice< const std::vector< types::global_dof_index > > &  indices,
std::vector< std::vector< number > > &  laplacians,
bool  quadrature_points_fastest = false 
) const

Access to the second derivatives of a function with more flexibility. see get_function_values() with corresponding arguments.

template<int dim, int spacedim>
const Point<spacedim>& FEValuesBase< dim, spacedim >::quadrature_point ( const unsigned int  i) const

Position of the ith quadrature point in real space.

template<int dim, int spacedim>
const std::vector<Point<spacedim> >& FEValuesBase< dim, spacedim >::get_quadrature_points ( ) const

Return a pointer to the vector of quadrature points in real space.

template<int dim, int spacedim>
double FEValuesBase< dim, spacedim >::JxW ( const unsigned int  quadrature_point) const

Mapped quadrature weight. If this object refers to a volume evaluation (i.e. the derived class is of type FEValues), then this is the Jacobi determinant times the weight of the *ith unit quadrature point.

For surface evaluations (i.e. classes FEFaceValues or FESubfaceValues), it is the mapped surface element times the weight of the quadrature point.

You can think of the quantity returned by this function as the volume or surface element $dx, ds$ in the integral that we implement here by quadrature.

template<int dim, int spacedim>
const std::vector<double>& FEValuesBase< dim, spacedim >::get_JxW_values ( ) const

Pointer to the array holding the values returned by JxW().

template<int dim, int spacedim>
const DerivativeForm<1,dim,spacedim>& FEValuesBase< dim, spacedim >::jacobian ( const unsigned int  quadrature_point) const

Return the Jacobian of the transformation at the specified quadrature point, i.e. $J_{ij}=dx_i/d\hat x_j$

template<int dim, int spacedim>
const std::vector<DerivativeForm<1,dim,spacedim> >& FEValuesBase< dim, spacedim >::get_jacobians ( ) const

Pointer to the array holding the values returned by jacobian().

template<int dim, int spacedim>
const DerivativeForm<2,dim,spacedim>& FEValuesBase< dim, spacedim >::jacobian_grad ( const unsigned int  quadrature_point) const

Return the second derivative of the transformation from unit to real cell, i.e. the first derivative of the Jacobian, at the specified quadrature point, i.e. $G_{ijk}=dJ_{jk}/d\hat x_i$.

template<int dim, int spacedim>
const std::vector<DerivativeForm<2,dim,spacedim> >& FEValuesBase< dim, spacedim >::get_jacobian_grads ( ) const

Pointer to the array holding the values returned by jacobian_grads().

template<int dim, int spacedim>
const DerivativeForm<1,spacedim,dim>& FEValuesBase< dim, spacedim >::inverse_jacobian ( const unsigned int  quadrature_point) const

Return the inverse Jacobian of the transformation at the specified quadrature point, i.e. $J_{ij}=d\hat x_i/dx_j$

template<int dim, int spacedim>
const std::vector<DerivativeForm<1,spacedim,dim> >& FEValuesBase< dim, spacedim >::get_inverse_jacobians ( ) const

Pointer to the array holding the values returned by inverse_jacobian().

template<int dim, int spacedim>
const Point<spacedim>& FEValuesBase< dim, spacedim >::normal_vector ( const unsigned int  i) const

For a face, return the outward normal vector to the cell at the ith quadrature point.

For a cell of codimension one, return the normal vector, as it is specified by the numbering of the vertices.

The length of the vector is normalized to one.

template<int dim, int spacedim>
const std::vector<Point<spacedim> >& FEValuesBase< dim, spacedim >::get_normal_vectors ( ) const

Return the normal vectors at the quadrature points. For a face, these are the outward normal vectors to the cell. For a cell of codimension one, the orientation is given by the numbering of vertices.

template<int dim, int spacedim>
void FEValuesBase< dim, spacedim >::transform ( std::vector< Tensor< 1, spacedim > > &  transformed,
const std::vector< Tensor< 1, dim > > &  original,
MappingType  mapping 
) const

Transform a set of vectors, one for each quadrature point. The mapping can be any of the ones defined in MappingType.

template<int dim, int spacedim>
const Point<spacedim>& FEValuesBase< dim, spacedim >::cell_normal_vector ( const unsigned int  i) const
Deprecated:
Use normal_vector() instead.

Return the outward normal vector to the cell at the ith quadrature point. The length of the vector is normalized to one.

template<int dim, int spacedim>
const std::vector<Point<spacedim> >& FEValuesBase< dim, spacedim >::get_cell_normal_vectors ( ) const
Deprecated:
Use get_normal_vectors() instead.

Returns the vectors normal to the cell in each of the quadrature points.

template<int dim, int spacedim>
const FEValuesViews::Scalar<dim,spacedim>& FEValuesBase< dim, spacedim >::operator[] ( const FEValuesExtractors::Scalar scalar) const

Create a view of the current FEValues object that represents a particular scalar component of the possibly vector-valued finite element. The concept of views is explained in the documentation of the namespace FEValuesViews and in particular in the Handling vector valued problems module.

template<int dim, int spacedim>
const FEValuesViews::Vector<dim,spacedim>& FEValuesBase< dim, spacedim >::operator[] ( const FEValuesExtractors::Vector vector) const

Create a view of the current FEValues object that represents a set of dim scalar components (i.e. a vector) of the vector-valued finite element. The concept of views is explained in the documentation of the namespace FEValuesViews and in particular in the Handling vector valued problems module.

template<int dim, int spacedim>
const FEValuesViews::SymmetricTensor<2,dim,spacedim>& FEValuesBase< dim, spacedim >::operator[] ( const FEValuesExtractors::SymmetricTensor< 2 > &  tensor) const

Create a view of the current FEValues object that represents a set of (dim*dim + dim)/2 scalar components (i.e. a symmetric 2nd order tensor) of the vector-valued finite element. The concept of views is explained in the documentation of the namespace FEValuesViews and in particular in the Handling vector valued problems module.

template<int dim, int spacedim>
const FEValuesViews::Tensor<2,dim,spacedim>& FEValuesBase< dim, spacedim >::operator[] ( const FEValuesExtractors::Tensor< 2 > &  tensor) const

Create a view of the current FEValues object that represents a set of (dim*dim) scalar components (i.e. a 2nd order tensor) of the vector-valued finite element. The concept of views is explained in the documentation of the namespace FEValuesViews and in particular in the Handling vector valued problems module.

template<int dim, int spacedim>
const Mapping<dim,spacedim>& FEValuesBase< dim, spacedim >::get_mapping ( ) const

Constant reference to the selected mapping object.

template<int dim, int spacedim>
const FiniteElement<dim,spacedim>& FEValuesBase< dim, spacedim >::get_fe ( ) const

Constant reference to the selected finite element object.

template<int dim, int spacedim>
UpdateFlags FEValuesBase< dim, spacedim >::get_update_flags ( ) const

Return the update flags set for this object.

template<int dim, int spacedim>
const Triangulation<dim,spacedim>::cell_iterator FEValuesBase< dim, spacedim >::get_cell ( ) const

Return a triangulation iterator to the current cell.

template<int dim, int spacedim>
CellSimilarity::Similarity FEValuesBase< dim, spacedim >::get_cell_similarity ( ) const

Return the relation of the current cell to the previous cell. This allows re-use of some cell data (like local matrices for equations with constant coefficients) if the result is CellSimilarity::translation.

template<int dim, int spacedim>
std::size_t FEValuesBase< dim, spacedim >::memory_consumption ( ) const

Determine an estimate for the memory consumption (in bytes) of this object.

template<int dim, int spacedim>
void FEValuesBase< dim, spacedim >::invalidate_present_cell ( )
protected

A function that is connected to the triangulation in order to reset the stored 'present_cell' iterator to an invalid one whenever the triangulation is changed and the iterator consequently becomes invalid.

template<int dim, int spacedim>
void FEValuesBase< dim, spacedim >::maybe_invalidate_previous_present_cell ( const typename Triangulation< dim, spacedim >::cell_iterator &  cell)
protected

This function is called by the various reinit() functions in derived classes. Given the cell indicated by the argument, test whether we have to throw away the previously stored present_cell argument because it would require us to compare cells from different triangulations. In checking all this, also make sure that we have tria_listener connected to the triangulation to which we will set present_cell right after calling this function.

template<int dim, int spacedim>
UpdateFlags FEValuesBase< dim, spacedim >::compute_update_flags ( const UpdateFlags  update_flags) const
protected

Initialize some update flags. Called from the initialize functions of derived classes, which are in turn called from their constructors.

Basically, this function finds out using the finite element and mapping object already stored which flags need to be set to compute everything the user wants, as expressed through the flags passed as argument.

template<int dim, int spacedim>
void FEValuesBase< dim, spacedim >::check_cell_similarity ( const typename Triangulation< dim, spacedim >::cell_iterator &  cell)
protected

A function that checks whether the new cell is similar to the one previously used. Then, a significant amount of the data can be reused, e.g. the derivatives of the basis functions in real space, shape_grad.

template<int dim, int spacedim>
FEValuesBase& FEValuesBase< dim, spacedim >::operator= ( const FEValuesBase< dim, spacedim > &  )
private

Copy operator. Since objects of this class are not copyable, we make it private, and also do not implement it.

Friends And Related Function Documentation

template<int dim, int spacedim>
template<int , int >
friend class FEValuesViews::Scalar
friend

Make the view classes friends of this class, since they access internal data.

Definition at line 2409 of file fe_values.h.

Member Data Documentation

template<int dim, int spacedim>
const unsigned int FEValuesBase< dim, spacedim >::dimension = dim
static

Dimension in which this object operates.

Definition at line 1401 of file fe_values.h.

template<int dim, int spacedim>
const unsigned int FEValuesBase< dim, spacedim >::space_dimension = spacedim
static

Dimension of the space in which this object operates.

Definition at line 1406 of file fe_values.h.

template<int dim, int spacedim>
const unsigned int FEValuesBase< dim, spacedim >::n_quadrature_points

Number of quadrature points.

Definition at line 1411 of file fe_values.h.

template<int dim, int spacedim>
const unsigned int FEValuesBase< dim, spacedim >::dofs_per_cell

Number of shape functions per cell. If we use this base class to evaluate a finite element on faces of cells, this is still the number of degrees of freedom per cell, not per face.

Definition at line 1418 of file fe_values.h.

template<int dim, int spacedim>
std::auto_ptr<const CellIteratorBase> FEValuesBase< dim, spacedim >::present_cell
protected

Store the cell selected last time the reinit() function was called. This is necessary for the get_function_* functions as well as the functions of same name in the extractor classes.

Definition at line 2304 of file fe_values.h.

template<int dim, int spacedim>
boost::signals2::connection FEValuesBase< dim, spacedim >::tria_listener
protected

A signal connection we use to ensure we get informed whenever the triangulation changes. We need to know about that because it invalidates all cell iterators and, as part of that, the 'present_cell' iterator we keep around between subsequent calls to reinit() in order to compute the cell similarity.

Definition at line 2320 of file fe_values.h.

template<int dim, int spacedim>
const SmartPointer<const Mapping<dim,spacedim>,FEValuesBase<dim,spacedim> > FEValuesBase< dim, spacedim >::mapping
protected

Storage for the mapping object.

Definition at line 2344 of file fe_values.h.

template<int dim, int spacedim>
const SmartPointer<const FiniteElement<dim,spacedim>,FEValuesBase<dim,spacedim> > FEValuesBase< dim, spacedim >::fe
protected

Store the finite element for later use.

Definition at line 2349 of file fe_values.h.

template<int dim, int spacedim>
SmartPointer<typename Mapping<dim,spacedim>::InternalDataBase,FEValuesBase<dim,spacedim> > FEValuesBase< dim, spacedim >::mapping_data
protected

Internal data of mapping.

Definition at line 2355 of file fe_values.h.

template<int dim, int spacedim>
SmartPointer<typename Mapping<dim,spacedim>::InternalDataBase,FEValuesBase<dim,spacedim> > FEValuesBase< dim, spacedim >::fe_data
protected

Internal data of finite element.

Definition at line 2360 of file fe_values.h.

template<int dim, int spacedim>
CellSimilarity::Similarity FEValuesBase< dim, spacedim >::cell_similarity
protected

An enum variable that can store different states of the current cell in comparison to the previously visited cell. If wanted, additional states can be checked here and used in one of the methods used during reinit.

Definition at line 2377 of file fe_values.h.

template<int dim, int spacedim>
::internal::FEValuesViews::Cache<dim,spacedim> FEValuesBase< dim, spacedim >::fe_values_views_cache
private

A cache for all possible FEValuesViews objects.

Definition at line 2403 of file fe_values.h.


The documentation for this class was generated from the following files: