![]() |
Reference documentation for deal.II version 8.1.0
|
#include <fe_raviart_thomas.h>
Classes | |
class | InternalData |
Public Member Functions | |
FE_RaviartThomas (const unsigned int p) | |
virtual std::string | get_name () const |
virtual bool | has_support_on_face (const unsigned int shape_index, const unsigned int face_index) const |
virtual void | interpolate (std::vector< double > &local_dofs, const std::vector< double > &values) const |
virtual void | interpolate (std::vector< double > &local_dofs, const std::vector< Vector< double > > &values, unsigned int offset=0) const |
virtual void | interpolate (std::vector< double > &local_dofs, const VectorSlice< const std::vector< std::vector< double > > > &values) const |
virtual std::size_t | memory_consumption () const |
virtual FiniteElement< dim > * | clone () const |
![]() | |
FE_PolyTensor (const unsigned int degree, const FiniteElementData< dim > &fe_data, const std::vector< bool > &restriction_is_additive_flags, const std::vector< ComponentMask > &nonzero_components) | |
virtual double | shape_value (const unsigned int i, const Point< dim > &p) const |
virtual double | shape_value_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const |
virtual Tensor< 1, dim > | shape_grad (const unsigned int i, const Point< dim > &p) const |
virtual Tensor< 1, dim > | shape_grad_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const |
virtual Tensor< 2, dim > | shape_grad_grad (const unsigned int i, const Point< dim > &p) const |
virtual Tensor< 2, dim > | shape_grad_grad_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const |
virtual UpdateFlags | update_once (const UpdateFlags flags) const |
virtual UpdateFlags | update_each (const UpdateFlags flags) const |
![]() | |
FiniteElement (const FiniteElementData< dim > &fe_data, const std::vector< bool > &restriction_is_additive_flags, const std::vector< ComponentMask > &nonzero_components) | |
virtual | ~FiniteElement () |
const FiniteElement< dim, spacedim > & | operator[] (const unsigned int fe_index) const |
bool | operator== (const FiniteElement< dim, spacedim > &) const |
DeclException1 (ExcShapeFunctionNotPrimitive, int,<< "The shape function with index "<< arg1<< " is not primitive, i.e. it is vector-valued and "<< "has more than one non-zero vector component. This "<< "function cannot be called for these shape functions. "<< "Maybe you want to use the same function with the "<< "_component suffix?") | |
DeclException0 (ExcFENotPrimitive) | |
DeclException0 (ExcUnitShapeValuesDoNotExist) | |
DeclException0 (ExcFEHasNoSupportPoints) | |
DeclException0 (ExcEmbeddingVoid) | |
DeclException0 (ExcProjectionVoid) | |
DeclException0 (ExcConstraintsVoid) | |
DeclException2 (ExcWrongInterfaceMatrixSize, int, int,<< "The interface matrix has a size of "<< arg1<< "x"<< arg2<< ", which is not reasonable in the present dimension.") | |
DeclException2 (ExcComponentIndexInvalid, int, int,<< "The component-index pair ("<< arg1<< ", "<< arg2<< ") is invalid, i.e. non-existent.") | |
DeclException0 (ExcInterpolationNotImplemented) | |
DeclException0 (ExcBoundaryFaceUsed) | |
DeclException0 (ExcJacobiDeterminantHasWrongSign) | |
virtual const FullMatrix < double > & | get_restriction_matrix (const unsigned int child, const RefinementCase< dim > &refinement_case=RefinementCase< dim >::isotropic_refinement) const |
virtual const FullMatrix < double > & | get_prolongation_matrix (const unsigned int child, const RefinementCase< dim > &refinement_case=RefinementCase< dim >::isotropic_refinement) const |
bool | prolongation_is_implemented () const |
bool | isotropic_prolongation_is_implemented () const |
bool | restriction_is_implemented () const |
bool | isotropic_restriction_is_implemented () const |
bool | restriction_is_additive (const unsigned int index) const |
const FullMatrix< double > & | constraints (const ::internal::SubfaceCase< dim > &subface_case=::internal::SubfaceCase< dim >::case_isotropic) const |
bool | constraints_are_implemented (const ::internal::SubfaceCase< dim > &subface_case=::internal::SubfaceCase< dim >::case_isotropic) const |
virtual bool | hp_constraints_are_implemented () const |
virtual void | get_interpolation_matrix (const FiniteElement< dim, spacedim > &source, FullMatrix< double > &matrix) const |
virtual void | get_face_interpolation_matrix (const FiniteElement< dim, spacedim > &source, FullMatrix< double > &matrix) const |
virtual void | get_subface_interpolation_matrix (const FiniteElement< dim, spacedim > &source, const unsigned int subface, FullMatrix< double > &matrix) const |
virtual std::vector< std::pair < unsigned int, unsigned int > > | hp_vertex_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const |
virtual std::vector< std::pair < unsigned int, unsigned int > > | hp_line_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const |
virtual std::vector< std::pair < unsigned int, unsigned int > > | hp_quad_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const |
virtual FiniteElementDomination::Domination | compare_for_face_domination (const FiniteElement< dim, spacedim > &fe_other) const |
std::pair< unsigned int, unsigned int > | system_to_component_index (const unsigned int index) const |
unsigned int | component_to_system_index (const unsigned int component, const unsigned int index) const |
std::pair< unsigned int, unsigned int > | face_system_to_component_index (const unsigned int index) const |
virtual unsigned int | face_to_cell_index (const unsigned int face_dof_index, const unsigned int face, const bool face_orientation=true, const bool face_flip=false, const bool face_rotation=false) const |
unsigned int | adjust_quad_dof_index_for_face_orientation (const unsigned int index, const bool face_orientation, const bool face_flip, const bool face_rotation) const |
unsigned int | adjust_line_dof_index_for_line_orientation (const unsigned int index, const bool line_orientation) const |
const ComponentMask & | get_nonzero_components (const unsigned int i) const |
unsigned int | n_nonzero_components (const unsigned int i) const |
bool | is_primitive (const unsigned int i) const |
unsigned int | n_base_elements () const |
virtual const FiniteElement < dim, spacedim > & | base_element (const unsigned int index) const |
unsigned int | element_multiplicity (const unsigned int index) const |
std::pair< std::pair< unsigned int, unsigned int >, unsigned int > | system_to_base_index (const unsigned int index) const |
std::pair< std::pair< unsigned int, unsigned int >, unsigned int > | face_system_to_base_index (const unsigned int index) const |
types::global_dof_index | first_block_of_base (const unsigned int b) const |
std::pair< unsigned int, unsigned int > | component_to_base_index (const unsigned int component) const |
std::pair< unsigned int, unsigned int > | block_to_base_index (const unsigned int block) const |
std::pair< unsigned int, types::global_dof_index > | system_to_block_index (const unsigned int component) const |
unsigned int | component_to_block_index (const unsigned int component) const |
ComponentMask | component_mask (const FEValuesExtractors::Scalar &scalar) const |
ComponentMask | component_mask (const FEValuesExtractors::Vector &vector) const |
ComponentMask | component_mask (const FEValuesExtractors::SymmetricTensor< 2 > &sym_tensor) const |
ComponentMask | component_mask (const BlockMask &block_mask) const |
BlockMask | block_mask (const FEValuesExtractors::Scalar &scalar) const |
BlockMask | block_mask (const FEValuesExtractors::Vector &vector) const |
BlockMask | block_mask (const FEValuesExtractors::SymmetricTensor< 2 > &sym_tensor) const |
BlockMask | block_mask (const ComponentMask &component_mask) const |
const std::vector< Point< dim > > & | get_unit_support_points () const |
bool | has_support_points () const |
virtual Point< dim > | unit_support_point (const unsigned int index) const |
const std::vector< Point< dim-1 > > & | get_unit_face_support_points () const |
bool | has_face_support_points () const |
virtual Point< dim-1 > | unit_face_support_point (const unsigned int index) const |
const std::vector< Point< dim > > & | get_generalized_support_points () const |
bool | has_generalized_support_points () const |
const std::vector< Point< dim-1 > > & | get_generalized_face_support_points () const |
bool | has_generalized_face_support_points () const |
![]() | |
Subscriptor () | |
Subscriptor (const Subscriptor &) | |
virtual | ~Subscriptor () |
Subscriptor & | operator= (const Subscriptor &) |
void | subscribe (const char *identifier=0) const |
void | unsubscribe (const char *identifier=0) const |
unsigned int | n_subscriptions () const |
void | list_subscribers () const |
DeclException3 (ExcInUse, int, char *, std::string &,<< "Object of class "<< arg2<< " is still used by "<< arg1<< " other objects.\n"<< "(Additional information: "<< arg3<< ")\n"<< "Note the entry in the Frequently Asked Questions of "<< "deal.II (linked to from http://www.dealii.org/) for "<< "more information on what this error means.") | |
DeclException2 (ExcNoSubscriber, char *, char *,<< "No subscriber with identifier \""<< arg2<< "\" did subscribe to this object of class "<< arg1) | |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
![]() | |
FiniteElementData () | |
FiniteElementData (const std::vector< unsigned int > &dofs_per_object, const unsigned int n_components, const unsigned int degree, const Conformity conformity=unknown, const unsigned int n_blocks=numbers::invalid_unsigned_int) | |
unsigned int | n_dofs_per_vertex () const |
unsigned int | n_dofs_per_line () const |
unsigned int | n_dofs_per_quad () const |
unsigned int | n_dofs_per_hex () const |
unsigned int | n_dofs_per_face () const |
unsigned int | n_dofs_per_cell () const |
template<int structdim> | |
unsigned int | n_dofs_per_object () const |
unsigned int | n_components () const |
unsigned int | n_blocks () const |
const BlockIndices & | block_indices () const |
bool | is_primitive () const |
unsigned int | tensor_degree () const |
bool | conforms (const Conformity) const |
bool | operator== (const FiniteElementData &) const |
Private Member Functions | |
void | initialize_support_points (const unsigned int rt_degree) |
void | initialize_restriction () |
Static Private Member Functions | |
static std::vector< unsigned int > | get_dpo_vector (const unsigned int degree) |
Private Attributes | |
Table< 2, double > | boundary_weights |
Table< 3, double > | interior_weights |
Friends | |
template<int dim1> | |
class | FE_RaviartThomas |
Additional Inherited Members | |
![]() | |
enum | Conformity { unknown = 0x00, L2 = 0x01, Hcurl = 0x02, Hdiv = 0x04, H1 = Hcurl | Hdiv, H2 = 0x0e } |
![]() | |
const unsigned int | dofs_per_vertex |
const unsigned int | dofs_per_line |
const unsigned int | dofs_per_quad |
const unsigned int | dofs_per_hex |
const unsigned int | first_line_index |
const unsigned int | first_quad_index |
const unsigned int | first_hex_index |
const unsigned int | first_face_line_index |
const unsigned int | first_face_quad_index |
const unsigned int | dofs_per_face |
const unsigned int | dofs_per_cell |
const unsigned int | components |
const unsigned int | degree |
const Conformity | conforming_space |
BlockIndices | block_indices_data |
![]() | |
static const unsigned int | dimension = dim |
![]() | |
virtual Mapping< dim, spacedim > ::InternalDataBase * | get_data (const UpdateFlags, const Mapping< dim, spacedim > &mapping, const Quadrature< dim > &quadrature) const |
virtual void | fill_fe_values (const Mapping< dim, spacedim > &mapping, const typename Triangulation< dim, spacedim >::cell_iterator &cell, const Quadrature< dim > &quadrature, typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, typename Mapping< dim, spacedim >::InternalDataBase &fe_internal, FEValuesData< dim, spacedim > &data, CellSimilarity::Similarity &cell_similarity) const |
virtual void | fill_fe_face_values (const Mapping< dim, spacedim > &mapping, const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const Quadrature< dim-1 > &quadrature, typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, typename Mapping< dim, spacedim >::InternalDataBase &fe_internal, FEValuesData< dim, spacedim > &data) const |
virtual void | fill_fe_subface_values (const Mapping< dim, spacedim > &mapping, const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const unsigned int sub_no, const Quadrature< dim-1 > &quadrature, typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, typename Mapping< dim, spacedim >::InternalDataBase &fe_internal, FEValuesData< dim, spacedim > &data) const |
![]() | |
void | reinit_restriction_and_prolongation_matrices (const bool isotropic_restriction_only=false, const bool isotropic_prolongation_only=false) |
TableIndices< 2 > | interface_constraints_size () const |
void | compute_2nd (const Mapping< dim, spacedim > &mapping, const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int offset, typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, InternalDataBase &fe_internal, FEValuesData< dim, spacedim > &data) const |
![]() | |
void | set_primitivity (const bool value) |
![]() | |
static std::vector< unsigned int > | compute_n_nonzero_components (const std::vector< ComponentMask > &nonzero_components) |
![]() | |
MappingType | mapping_type |
PolynomialsRaviartThomas< dim > | poly_space |
FullMatrix< double > | inverse_node_matrix |
Point< dim > | cached_point |
std::vector< Tensor< 1, dim > > | cached_values |
std::vector< Tensor< 2, dim > > | cached_grads |
std::vector< Tensor< 3, dim > > | cached_grad_grads |
![]() | |
std::vector< std::vector < FullMatrix< double > > > | restriction |
std::vector< std::vector < FullMatrix< double > > > | prolongation |
FullMatrix< double > | interface_constraints |
std::vector< Point< dim > > | unit_support_points |
std::vector< Point< dim-1 > > | unit_face_support_points |
std::vector< Point< dim > > | generalized_support_points |
std::vector< Point< dim-1 > > | generalized_face_support_points |
Table< 2, int > | adjust_quad_dof_index_for_face_orientation_table |
std::vector< int > | adjust_line_dof_index_for_line_orientation_table |
Implementation of Raviart-Thomas (RT) elements, conforming with the space Hdiv. These elements generate vector fields with normal components continuous between mesh cells.
We follow the usual definition of the degree of RT elements, which denotes the polynomial degree of the largest complete polynomial subspace contained in the RT space. Then, approximation order of the function itself is degree+1, as with usual polynomial spaces. The numbering so chosen implies the sequence
The lowest order element is consequently FE_RaviartThomas(0).
This class is not implemented for the codimension one case (spacedim != dim
).
The interpolation operators associated with the RT element are constructed such that interpolation and computing the divergence are commuting operations. We require this from interpolating arbitrary functions as well as the restriction matrices. It can be achieved by two interpolation schemes, the simplified one in FE_RaviartThomasNodal and the original one here:
On edges or faces, the node values are the moments of the normal component of the interpolated function with respect to the traces of the RT polynomials. Since the normal trace of the RT space of degree k on an edge/face is the space Qk, the moments are taken with respect to this space.
Higher order RT spaces have interior nodes. These are moments taken with respect to the gradient of functions in Qk on the cell (this space is the matching space for RTk in a mixed formulation).
The node values above rely on integrals, which will be computed by quadrature rules themselves. The generalized support points are a set of points such that this quadrature can be performed with sufficient accuracy. The points needed are thode of QGaussk+1 on each face as well as QGaussk in the interior of the cell (or none for RT0).
Definition at line 106 of file fe_raviart_thomas.h.
FE_RaviartThomas< dim >::FE_RaviartThomas | ( | const unsigned int | p | ) |
Constructor for the Raviart-Thomas element of degree p
.
|
virtual |
Return a string that uniquely identifies a finite element. This class returns FE_RaviartThomas<dim>(degree)
, with dim
and degree
replaced by appropriate values.
Implements FiniteElement< dim, spacedim >.
|
virtual |
Check whether a shape function may be non-zero on a face.
Right now, this is only implemented for RT0 in 1D. Otherwise, returns always true
.
Reimplemented from FiniteElement< dim, spacedim >.
|
virtual |
Interpolate a set of scalar values, computed in the generalized support points.
Reimplemented from FiniteElement< dim, spacedim >.
|
virtual |
Interpolate a set of vector values, computed in the generalized support points.
Since a finite element often only interpolates part of a vector, offset
is used to determine the first component of the vector to be interpolated. Maybe consider changing your data structures to use the next function.
Reimplemented from FiniteElement< dim, spacedim >.
|
virtual |
Interpolate a set of vector values, computed in the generalized support points.
Reimplemented from FiniteElement< dim, spacedim >.
|
virtual |
Determine an estimate for the memory consumption (in bytes) of this object.
This function is made virtual, since finite element objects are usually accessed through pointers to their base class, rather than the class itself.
Reimplemented from FiniteElement< dim, spacedim >.
|
virtual |
A sort of virtual copy constructor. Some places in the library, for example the constructors of FESystem as well as the hp::FECollection class, need to make copies of finite elements without knowing their exact type. They do so through this function.
Implements FiniteElement< dim, spacedim >.
|
staticprivate |
Only for internal use. Its full name is get_dofs_per_object_vector
function and it creates the dofs_per_object
vector that is needed within the constructor to be passed to the constructor of FiniteElementData
.
|
private |
Initialize the generalized_support_points
field of the FiniteElement class and fill the tables with interpolation weights (boundary_weights and interior_weights). Called from the constructor.
|
private |
Initialize the interpolation from functions on refined mesh cells onto the father cell. According to the philosophy of the Raviart-Thomas element, this restriction operator preserves the divergence of a function weakly.
Allow access from other dimensions.
Definition at line 282 of file fe_raviart_thomas.h.
|
private |
These are the factors multiplied to a function in the generalized_face_support_points when computing the integration. They are organized such that there is one row for each generalized face support point and one column for each degree of freedom on the face.
See the glossary entry on generalized support points for more information.
Definition at line 264 of file fe_raviart_thomas.h.
|
private |
Precomputed factors for interpolation of interior degrees of freedom. The rationale for this Table is the same as for boundary_weights. Only, this table has a third coordinate for the space direction of the component evaluated.
Definition at line 276 of file fe_raviart_thomas.h.