
Programmer’s Guide to the COND Facility

Generating and Reporting Conditions (Errors, Warnings)

Stephen M. Moore

Mallinckrodt Institute of Radiology
Electronic Radiology Laboratory

510 South Kingshighway Boulevard
St. Louis, Missouri 63110

314/362-6965 (Voice)
314/362-6971 (FAX)

Version 2.10.0
August 3, 1998

This document describes a reporting facility that may be
used in programs to provide detailed information about
conditions that may arise during execution.

Copyright (c) 1995 RSNA, Washington University
/wuerlb/documentation/dicom/facilities/cond.frm

en-

e
 error.

lity
s its
ne

lled
ck.

ed by

elds

 In
1 Introduction

The COND facility is designed to maintain a stack of conditionvalues and associated condition
messages. A condition value is of type CONDITION and uniquely identifies the facility that g
erated the error, the severity of the error, and the actual error itself. A conditionmessage is an
ASCIIZ string (a 0 terminated character string) generated by a facility in association with th
value and is designed to be readable by users or developers to determine the nature of the
The combination of a value and amessage is referred to as acondition vector.

Most functions are expected to return a conditionvalue. When an exception or error occurs, the
function is expected to push the <value, message> pair onto the stack and return thevalue to the
caller. Functions are allowed to push multiplevectors on the stack to more fully specify the
exception or error.

In the event of nested function calls, it is possible for a number of <value, message> pairs to be
pushed onto the stack. An application could call facility A which in turn calls facility B. Faci
B may push avector onto the stack and return to facility A. Facility A senses the error, pushe
ownvector, and returns its conditionvalue to the application. The application can then exami
the stack for detailed information about the failure.

It is assumed that most applications will only examine the value returned by the facility it ca
(facility A in the example above) and will not try to interpret secondary conditions on the sta
Applications usually dump the contents of the stack to some type of error log to be examin
developers.

2 Data Structures

2.1 CONDITION Data Type and Macros

As mentioned above, CONDITION is a data type defined in “condition.h” It contains three fi
which define:

• facility

• severity

• value

Facility is a unique number assigned by an administrator that identifies a particular facility.
our system, we place these definitions in a central file that all modules are expected to
include. For example, we define the following facilities for the DICOM project:

• FAC_DUL 1

• FAC_ACR 2

• FAC_IDX 3

values

r con-

e

 return

ned in

e for
Severity is one of a predefined set of values which indicates the severity of the error. These
are:

SEV_SUCC A successful return value.

SEV_INFORM An informational value.

SEV_WARN The function was able to return successfully but some condition was detected.

SEV_ERROR The function was not able to complete.

SEV_FATAL The function was not able to complete and a fatal error occurred.

Value is assigned by the writer of the facility. It is a unique number that is tied to a particula
dition.

The writer of the facility uses the macro FORM_COND (facility, severity, value) to create a legal
CONDITION. This macro arranges the fields appropriately and generates a value with typ
CONDITION.

Each facility is expected to have at least one “normal” value which is the generic successful
value for the facility. This value should have the name FAC_NORMAL (for example,
ACR_NORMAL). Other CONDITIONS are assigned as needed. These conditions are defi
the facility include file which is used by both the facility itself and by the application that
wishes to use the facility.

Users of the facility can examine conditionvalues for equality (if cond == ACR_X) or can test
for the severity of a condition by using the following macros:

• CTN_SUCCESS(x)

• CTN_CTN_INFORM(x)

• CTN_WARNING(x)

• CTN_ERROR(x)

• CTN_FATAL(x)

These macros are used to hide the actual data representation from the user and will provid
more robust code. They are boolean expressions that return 1 if they are true (x is of severity
SUCCESS) and 0 if not.

The macroFACILITY(x) will return the facility number associated with conditionx . Thus,
you could perform the following type of test:

if (FACILITY(x) == DUL_ACR)

2.2 Making a Condition Message

As discussed above, a conditionmessage is an ASCIIZ string that provides a human-readable
description of the condition. Themessage is formed by passing a control string and a variable
2/11

s
per).

lt

e to use
hen
ni-
ated in

eign
ed
number of arguments toCOND_PushCondition . COND_PushCondition takes the control
string and uses thevsprintf function to format themessage that is placed on the stack. In thi
way run time messages can provide a little more information to the user (and to the develo
For example, you might callCOND_Push Condition with the following arguments:

XXX_FILEERR, “XXX - Failed to open file: %s”, fileName

(wherefileName is a variable that holds the name of some file).COND_PushCondition
will combine“XXX - Failed to open file: %s” with the filename and push the resu
on the stack with the conditionvalue.

Note that we used an actual string in the example above. As a matter of practice, we choos
macro constants for the control strings or create a function which returns a control string w
given conditionvalue. Either of these two practices will help make your facility a little more u
form so that the message for a particular condition looks the same if the message is gener
several different places in your facility.

3 Include Files

To use COND functions, applications need to include these files in the order given below:

#include “dicom.h”
#include “condition.h”

4 Return Values

This facility is different from the other facilities in that most routines return a value that is for
to the facility.For example, the routine that pushes avector onto the stack returns the value pass
to it. The only return value defined for this facility is:

COND_NORMAL Normal completion of a condition routine.

5 COND Routines

Detailed descriptions of the COND functions are included in this section.

 of

ed

ues
COND_CopyText

Name

COND_CopyText - copy text from condition stack to caller’s area

Synopsis

void CONDITION COND_CopyText(char *txt, size_t length)

txt Pointer to memory in caller’s address space to hold text written by this
function.

length Length of the txt buffer allocated by the caller.

Description

COND_CopyText is a function that provides a simple mechanism for extracting some
the text information from the condition stack. The caller allocates space intxt before call-
ing this function.COND_CopyText will copy as much of the text information into the
caller’s area as allowed bylength. The text from each condition on the stack is separat
by ‘\n’.

Notes

The user may not like the format of the text returned or the fact that no condition val
are written in the text. A more powerful function (COND_ExtractConditions) exists to
give the user more control over format and amount of data.

Return Values

None
4/11

.

COND_DumpConditions

Name

COND_DumpConditons - dump the contents of the error stack.

Synopsis

void CONDITION COND_DumpConditions()

Description

COND_DumpConditions is a simple mechanism for dumping the error stack tostderr.
This function prints each value and condition on the stack and then clears the stack

Notes

Return Values

ition

,
g tool

ing
c-
ll-
COND_EstablishCallback

Name

COND_EstablishCallback - a user function to be called whenever COND_PushCond
is called.

Synopsis

CONDITION COND_EstablishCallback(void (*callback)())

callback The function to be called whenever DUL_PushCondition is called.

Description

The function records the address of a callback routine to be called whenever
DUL_PushCondition is called. The callback routine is called with arguments <value
message> which are to be pushed onto the stack. This function is a useful debuggin
which allows the application writer to log each condition as it occurs rather than wait
for a function to return. Writers of individual facilities would probably not call this fun
tion. To disable the callback, the function should be called with a NULL ca
back.

Return Values

COND_NORMAL
6/11

SE
COND_ExtractConditions

Name

COND_ExtractConditions - extract the (condition, message) pairs from the condition
stack.

Synopsis

CONDITION COND_ExtractConditions(BOOLEAN (*callback)())

callback The function to be called for each condition on the stack.

Description

This function examines each conditionvector on the condition stack and calls thecallback
routine for each vector with arguments (value, message). Thecallback routine is a func-
tion that returns TRUE if more conditions are to be extracted from the stack and FAL
otherwise. This function does not alter the condition stack.

Return Values

COND_NORMAL

N-
COND_PopCondition

Name

COND_PopCondition - pop one or all conditions off the condition stack.

Synopsis

CONDITION COND_PopCondition(BOOLEAN clearStack)

clearStackBoolean variable indicating if the entire stack is to be cleared.

Description

This function pops the top condition off the top of the stack ifclearstack is FALSE and
clears the entire stack ifclearstack is TRUE. In either case, the function returns the CO
DITION value that was on top of the stack.

If the stack is empty, the function returns COND_NORMAL.

Return Values

COND_NORMAL

Topvalue on the stack
8/11

rn the

the con-
tan-

e stan-
COND_PushCondition

Name

COND_PushCondition - push a (value, message) pair on the condition stack and retu
condition value which was pushed.

Synopsis

CONDITION COND_PushCondition(CONDITION condition,
char*controlString, ...)

condition The CONDITION value to be pushed on the stack.
controlString An ASCIIZ string used as a control string for formatting the

condition message.
... Arguments as required by controlString.

Description

This function pushes a (condition, message) pair onto the control stack. The caller passes
dition to be placed on the stack and an ASCIIZ string which is a control string used by the s
dard C run time libraryvsprintf for formatting an output string. The caller passes optional
arguments as required by the control string.

Notes

In the event that the stack overflows, all of the vectors on the stack are dumped to th
dard error and the stack is reset.

Return Values

The condition value that was pushed onto the stack.

e
ssage
COND_TopCondition

Name

COND_TopCondition - return the top (value, message) pair to the caller.

Synopsis

CONDITION COND_TopCondition(CONDITION *condition,
char *text, unsigned long maxLength)

condition Caller’s variable to hold top condition on the stack.
text Caller’s allocated area to hold text message from top condition.
maxLength Maximum length of string to write into text.

Description

This function reads the top <value, message> pair from the top of the stack and returns th
value to the caller. The caller provides storage access for the condition value and me
and gives the length of the text area in themaxlength argument. The function writes the
conditionvalue andmessage into the caller’s allocated area and returns the topvalue. In
the event that the stack is empty, the routine returnsCOND_NORMAL. The function does
not alter the stack.

Return Values

COND_NORMAL
The top value on the stack.
10/11

d by

 effect.
COND_WriteConditions

Name

COND_WriteConditions - write the condition stack to a file

Synopsis

void CONDITION COND_WriteConditions(FILE *fp)

fp File pointer for an existing (open) file. ASCII dump of condition stack
will be written to this file.

Description

COND_WriteConditions is the proper implementation ofCOND_DumpConditions. It
allows the caller to dump the condition stack to an arbitrary file that has been opene
the caller.

Notes

To write the stack to the stdout,COND_WriteConditions(stdout);

Once the stack is written to the file, it is cleared. Maybe that is not such a great side

Return Values

None

	Programmer’s Guide to the COND Facility
	1 Introduction
	2 Data Structures
	2.1 CONDITION Data Type and Macros
	2.2 Making a Condition Message

	3 Include Files
	4 Return Values
	5 COND Routines

	COND_CopyText
	COND_DumpConditions
	COND_EstablishCallback
	COND_ExtractConditions
	COND_PopCondition
	COND_PushCondition
	COND_TopCondition
	COND_WriteConditions

