
Scheme->C Index to the

Revised4 Report on the Algorithmic Language Scheme

Joel F. Bartlett

15 March 1993

Implementation Notes

Scheme->C is an implementation of the language

Scheme as described in the Revised4 Report on

the Algorithmic Language Scheme (LISP Pointers,

Volume IV, Number 3, July-September 1991).

The implementation is known to not conform to

the required portions of the report in the following

ways:

• The syntax for numbers reflects the underly-

ing C implementation. Scheme programs may

not use the numeric prefixes #i and #e, and
numbers may not contain # as a digit.

• Numerical input and output uses the facilities

of the underlying C implementation. As a re-

sult, the constraints of section 6.5.6 may not

be satisfied.

• As /, quotient, and remainder depend upon C’s

behavior for negative fixed arguments (which

is undefined), those doing ports must verify

their correct operation.

• Implementations that do not handle arith-

metic overflow traps may return incorrect re-

sults when an overflow occurred during the

operation.

• The control flow of compiled programs is con-

strained by the underlying C implementation.

As a result, some tail calls are not compiled as

tail calls.

The implementation has been extended beyond

the report in the following ways:

• Additional procedures:

%list->record
%record
%record->list

%record-length
%record-lookup-method
%record-methods
%record-methods-set!
%record-ref %record-set!
%record?
after-collect
backtrace
bit-and bit-lsh
bit-not bit-or
bit-rsh bit-xor
c-byte-ref c-byte-set!
c-double-ref c-double-set!
c-float-ref c-float-set!
c-int-ref c-int-set!
c-longint-ref c-longint-set!
c-longunsigned-ref
c-longunsigned-set!
c-s2cuint-ref c-s2cuint-set!
c-shortint-ref
c-shortint-set!
c-shortunsigned-ref
c-shortunsigned-set!
c-sizeof-double
c-sizeof-float
c-sizeof-int c-sizeof-long
c-sizeof-s2cuint
c-sizeof-short c-sizeof-tscp
c-string->string
c-tscp-ref c-tscp-set!
c-unsigned-ref
c-unsigned-set!
catch-error close-port
collect collect-all
collect-info cons*
define-system-file-task
echo
enable-sytem-file-tasks
error eval
exit

1

expand expand-once
fixed->float fixed?
float->fixed float?
flush-buffer format
get-output-string
getprop getprop-all
implementation-information
last-pair
open-file
open-input-string
open-output-string
optimize-eval
port->stdio-file
pp
proceed proceed?
putprop
read-eval-print
remove remove!
remq remq!
remv remv!
remove-file rename-file
reset
reset-bpt reset-error
scheme-byte-ref
scheme-byte-set!
scheme-int-ref
scheme-int-set!
scheme-s2cuint-ref
scheme-s2cuint-set!
scheme-tscp-ref
scheme-tscp-set!
set-gcinfo!
set-generation-limit!
set-maximum-heap!
set-stack-size!
set-time-slice!
set-top-level-value!
set-write-circle!
set-write-length!
set-write-level!
set-write-pretty!
set-write-width!
signal
stack-size
string->uninterned-symbol
system
time-of-day
time-slice
top-level
top-level-value
uninterned-symbol?

wait-system-file
weak-cons
when-unreferenced
write-circle write-count
write-length write-level
write-pretty write-width

• Additional syntax:

bpt
define-c-external
define-constant
define-external
define-in-line
define-macro include
module
trace untrace
unbpt
unless when

• Additional variables:

%record-prefix-char
%record-read

args *bpt-env*
debug-output-port

error-env
error-handler
frozen-objects
obarray *result*
scheme2c-result
stderr-port stdin-port
stdout-port
trace-output-port

Index

" delimits strings. Inside a string constant, a " is

represented by \", and a \ is represented by \\.
R4RS 25.

#(denotes the start of a vector. R4RS 26.

#\character written notation for characters.

R4RS 24.

#\formfeed ASCII form feed character (#o14).

R4RS 24.

#\linefeed ASCII line feed character (#o12).

R4RS 24.

#\newline new line character (#o12). R4RS 24.

2

#\return ASCII carriage return character (#o15).

R4RS 24.

#\space ASCII space character (#o40). R4RS 24.

#\tab ASCII tab character (#o11). R4RS 24.

#b binary radix prefix. R4RS 20.

#d decimal radix prefix. R4RS 20.

#f boolean constant for false. Note that while the

empty list () is also treated as a false value in

conditional expressions, it is not the same as #f.
R4RS 13.

#o octal radix prefix. R4RS 20.

#t boolean constant for true. R4RS 13.

#x hex radix prefix. R4RS 20.

(%list->record list) returns a newly created

record whose elements are the members of list.

(%record expression ...) returns a newly created

record whose elements contain the given argu-

ments.

(%record->list record) returns a newly created

list of the objects contained in the elements of

record.

(%record-length record) returns the number of

elements in record.

(%record-lookup-method record method) re-

turns either the record’s method procedure or #f
when no method is defined for the method named

method. All records have defaults for the following

methods: %to-display, to-equal?, %to-eval,
and %to-write.

(%record-methods record) returns a list of pairs

that denote the methods for record. Each pair is

composed of a symbol denoting the method name

and the method procedure.

(%record-methods-set! record methods) sets

the methods associated with record to methods, a

list of method pairs.

%record-prefix-char is the character that de-

notes a record.

%record-read is a procedure that is called to

read a record. When read encounters the value

of %read-prefix-char following a #, it calls

%record-read with the current input-port as its

argument to input the record. The value read is

the value returned by this procedure.

(%record-ref record integer) returns the con-

tents of element integer of record. The first ele-

ment is 0.

(%record-set! record integer) sets element inte-

ger of record to expression.

(%record? expression) predicate that returns #t
when expression is a record.

%to-displaymethod to display a record. When

display encounters a record, it calls the record’s

%to-display method with the following argu-

ments: the record, the output port, the number

of spaces to indent (or #f), the number of lev-

els to print (or #f), the length of lists, vectors,

or records to print (or #f), and a list of pairs,

vectors, and records already seen (or #f). The

method returns either #f indicating no further ac-

tion is to be taken, or a pair indicating that the

car of the pair is to be output. For example, if

%record-prefix-char is #\~, the method could

be: (lambda (r port . ignore) (display
"#~" port) (list (%record->list r))).

%to-equal? method to compare a record to any

value using equal?. The method prediate is

called with the record and the comparison value

as its arguments. The default method is eq?.

%to-eval method to evaluate a record. Eval
evaluates a record by returning the value of call-

ing the record’s %to-evalmethod with the record

as the argument. The default method is (lambda
(x) x).

%to-write method to write a record. When

write encounters a record, it calls the record’s

%to-write method with the following argu-

ments: the record, the output port, the number

of spaces to indent (or #f), the number of lev-

els to print (or #f), the length of lists, vectors,

or records to print (or #f), and a list of pairs,

vectors, and records already seen (or #f). The

method returns either #f indicating no further ac-

tion is to be taken, or a pair indicating that the

car of the pair is to be output. For example, if

%record-prefix-char is #\~, the method could

be: (lambda (r port . ignore) (display
"#~" port) (list (%record->list r))).

’expression abbreviation for (quote expression).

3

R4RS 7, 16.

(* number ...) returns the product of its argu-

ments. R4RS 21.

args arguments of the procedurewhen a break-

point has been hit. The value of this symbol will

be used as the arguments when the user continues

from the breakpoint. See bpt, proceed.

bpt-env list of environments when a break-

point is encountered in an embedded Scheme->C
system.

error-env list of environments when an error

occurs in an embedded Scheme->C system.

error-handler the error handling procedure.

See error.

frozen-objects list of objects that are never

moved by the garbage collector. Scheme programs

can use this to “lock down” objects in memory be-

fore passing them to programs written in other

languages.

obarray is a vector of lists of symbols. It

is used by read to assure that symbols written

and then read back in are eqv?. See interned,

R4RS 18.

result result of the procedure when a break-

point has been hit. The value of this symbol be

returned as the value of the procedure after the

user continues from the breakpoint. See bpt,
proceed.

scheme2c-result normal result of computa-

tion in an embedded Scheme->C system.

‘back-quote-template abbreviation for

(quasiquote back-quote template). R4RS 11.

(used to group and notate lists. R4RS 5.

() the empty list. R4RS 15.

) used to group and notate lists. R4RS 5.

(+ number ...) returns the sum of its arguments.

R4RS 21.

,expression abbreviation for (unquote expression)

that causes the expression to be replaced by its

value in the back-quote-template. R4RS 11.

,@expression abbreviation for

(unquote-splicing expression) that causes

the expression to be evaluated and “spliced” into

the back-quote-template. R4RS 11.

(- number number ...) with two or more argu-

ments, this returns the difference of its argu-

ments, associating to the left. With one argument

it returns the additive inverse of the argument.

R4RS 21.

-C command line flag to scc that will cause the

compiler to compile the Scheme files source.sc to

C source in source.c. No further processing is per-

formed.

-I directory command line flag to scc to supply

a directory to be searched by include when it is

looking for a source file. When multiple flags are

supplied, the directories are searched in the order

that the flags are specified.

-LIBDIR directory command line flag to scc to

supply the directory containing the files: predef.sc,

objects.h, libsc.a, and optionally libsc p.a.

-Ob command line flag to scc that controls

bounds checking. When it is supplied to the

compiler, no bounds checking code for vector or

string accesses will be generated. Supplying

this flag is equivalent to supplying the flags -f
’*bounds-check*’ ’#f’.

-Og command line flag to scc that controls the

generation of stack-trace debugging code. When

it is supplied to the compiler, stack-trace code will

not be generated.

-On command line flag to scc that controls num-

ber representation. When it is supplied to the

compiler, all numbers will be assumed to be fixed

integers. Supplying this flag is equivalent to sup-

plying the flags -f ’*fixed-only*’ ’#t’.

-Ot command line flag to scc that controls type

error checking. When it is supplied, no er-

ror checking code will be generated. Supplying

this flag is equivalent to supplying the flags -f
’*type-check*’ ’#f’.

-e command line flag to sci. When it is sup-

plied, all text read on the standard input file will

be echoed on the standard output file.

-emacs command line flag to sci. When supplied,

the interpreter assumes that it is being run by

GNU emacs.

4

-i command line flag to scc that will combine the

source and object files into a Scheme interpreter.

Module names for files other than Scheme source

files must be supplied using the -m command line

flag.

-log command line flag to scc to log infor-

mation internal to the compiler. Each type of

compiler information is denoted by one of the

flags: -source, -macro, -expand, -closed,
-transform, -lambda, -tree, -lap, -peep.
The flag -log is equivalent to specifying the

flags: -source, -macro, -expand, -closed,
-transform, -lambda, and -tree.

-m module command line flag to scc to specify

the name of a module that must be initialized

by calling the procedure module init. Note that

the Scheme compiler will downshift the alpha-

betic characters in module names supplied in the

module directive. Modules are initialized in the

order that the -m command flags are specified.

-nh command line flag to sci. When it is sup-

plied, the interpreter version header will not be

printed on the standard output file.

-np command line flag to sci. When it is sup-

plied, prompts for input from standard input will

not be printed on standard output.

-q command line flag to sci. When it is supplied,

the result of each expression evaluation will not

be printed on standard output.

-pg command line flag to scc that will cause it to

produce profiled code for run-time measurement

using gprof. The profiled library will be used in

lieu of the standard Scheme library.

-scgc flag command line flag to any Scheme pro-

gram that controls the reporting of garbage col-

lection statistics. If flag is set to 1, then garbage

collection statistics will be printed on stderr. This

flag will override SCGCINFO.

-sch integer command line flag to any Scheme

program to set the initial heap size in megabytes.

If it is not supplied, and the SCHEAP environment

variable was not set, and the program did not have

a default, then the implementation dependent de-

fault is used. This flag will override SCHEAP.

-scl integer command line flag to any Scheme

program to set the full collection limit. Whenmore

than this percent of the heap is allocated follow-

ing a generational garbage collection, then a full

garbage collection will be done. The default value

is 40. This flag will override SCLIMIT.

-scm symbol command line flag to any Scheme

program to cause execution to start at the proce-

dure that is the value of symbol, rather than at the

main program. Note that the Scheme read pro-

cedure typically upshifts alphabetic characters.

Thus, to start execution in the Scheme interpreter,

one would enter -scm READ-EVAL-PRINT on the

command line.

-scmh integer command line flag to any Scheme

program to set the maximum heap size in

megabytes. If it is not supplied, and the

SCMAXHEAP environment variable was not set,

then the maximum heap size is five times the ini-

tial heap size. This flag will override SCMAXHEAP.

. denotes a dotted-pair: (obj . obj). R4RS 15.

.sc file name extension for Scheme->C source

files.

(/ number ...) with two or more arguments, this

returns the quotient of its arguments, associating

to the left. With one argument it returns the mul-

tiplicative inverse of the argument. R4RS 21.

; indicates the start of a comment. The comment

continues until the end of the line. R4RS 5.

(< number number number ...) predicate that re-

turns #t when the arguments are monotonically

increasing. R4RS 21.

(<= number number number ...) predicate that re-

turns #t when the arguments are monotonically

nondecreasing. R4RS 21.

(= number number number ...) predicate that re-

turns #t when the arguments are equal. R4RS 21.

=> used in a cond conditional clause. R4RS 9.

(> number number number ...) predicate that re-

turns #t when the arguments are monotonically

decreasing. R4RS 21.

(>= number number number ...) predicate that re-

turns #t when the arguments are monotonically

nonincreasing. R4RS 21.

\ tells read to treat the character that follows it

as a letter when reading a symbol. If the character

5

is a lower-case alphabetic character, it will not be

upshifted. R4RS 18.

\" represents a " inside a string constant.

R4RS 25.

\\ represents a \ inside a string constant.

R4RS 25.

(abs number) returns the magnitude of its argu-

ment. R4RS 21.

(acos number) returns the arccosine of its argu-

ment. R4RS 23.

after-collect is a variable in the top level en-

vironment. Following each garbage collection, if

its value is not #f, then it is assumed to be a pro-

cedure and is called with three arguments: the

heap size in bytes, the currently allocated storage

in bytes, and the allocation percentage that will

cause a full garbage collection. The value returned

by the procedure is ignored.

alist a list of pairs. R4RS 17.

(and expression ...) syntax for a conditional expres-

sion. R4RS 9.

(append list ...) returns a list consisting of the el-

ements of the first list followed by the elements of

the other lists. R4RS 17.

(apply procedure arg-list) calls the procedure

with the elements of arg-list as the actual argu-

ments. R4RS 27.

(apply procedure obj ... arg-list) calls the proce-

dure with the list (append (list obj ...) arg-list)

as the actual arguments. R4RS 27.

(asin number) returns the arcsine of its argu-

ment. R4RS 23.

(assoc obj alist) finds the first pair in alist whose

car field is equal? to obj. If no such pair exists,

then #f is returned. R4RS 17.

(assq obj alist) finds the first pair in alist whose

car field is eq? to obj. If no such pair exists, then

#f is returned. R4RS 17.

(assv obj alist) finds the first pair in alist whose

car field is eqv? to obj. If no such pair exists, then

#f is returned. R4RS 17.

(atan number) returns the arctangent of its argu-

ment. R4RS 23.

(atan number number) returns the arctangent of

its arguments. R4RS 23.

(backtrace) displays the call stack where a

breakpoint occurred.

back-quote-template list or vector structure that

may contain ,expression and ,@expression forms.

R4RS 11.

(begin expression ...) syntax where expression’s

are evaluated left to right and the value of the last

expression is returned. R4RS 10.

bindings a list whose elements are of the form:

(symbol expression), where the expression is the

initial value to place in the location bound to the

symbol. R4RS 10.

(bit-and number ...) returns an unsigned num-

ber representing the bitwise and of its 32-bit ar-

guments.

(bit-lsh number integer) returns an unsigned

number representing the 32-bit value number

shifted left integer bits.

(bit-not number ...) returns an unsigned num-

ber representing the bitwise not of its 32-bit argu-

ment.

(bit-or number ...) returns an unsigned number

representing the bitwise inclusive or of its 32-bit

arguments.

(bit-rsh number integer) returns an unsigned

number representing the 32-bit value number

shifted right integer bits.

(bit-xor number ...) returns an unsigned num-

ber representing the bitwise exclusive or of its 32-

bit arguments.

body one or more expressions that are be executed

in sequence. R4RS 10.

(boolean? expression) predicate that returns #t
if expression is #t or #f. R4RS 13.

(bpt) syntax to return a list of the procedures that

have been breakpointed.

(bpt symbol) syntax to set a breakpoint on the pro-

cedure that is the value of symbol. Each entry and

exit of the procedure will provide the user with an

opportunity to examine and alter the current state

of the computation. For interactive Scheme->C
systems, the computation is continued by entering

6

control-D. The computation may be terminated

and a return made to the top level of the in-

terpreter by entering (top-level). In embed-

ded Scheme->C systems, (proceed) is used to

continue the computation, and the computation

is abandoned by evaluating (reset-error).See

args, *result*, top-level, unbpt.

(bpt symbol procedure) syntax to set a conditional

breakpoint on the procedure that is the value of

symbol. A breakpoint occurs when (apply proce-

dure arguments) returns a true value.

(c-byte-ref c-pointer integer) returns the byte

at the integer byte of c-pointer as a number.

(c-byte-set! c-pointer integer number) sets the

byte at the integer byte of c-pointer to number and

returns number as its value.

(c-double-ref c-pointer integer) returns the

double at the integer byte of c-pointer as a num-

ber.

(c-double-set! c-pointer integer number) sets

the double at the integer byte of c-pointer to num-

ber and returns number as its value.

(c-float-ref c-pointer integer) returns the float

at the integer byte of c-pointer as a number.

(c-float-set! c-pointer integer number) sets

the float at the integer byte of c-pointer to number

and returns number as its value.

(c-int-ref c-pointer integer) returns the int at

the integer byte of c-pointer as a number.

(c-int-set! c-pointer integer number) sets the

int at the integer byte of c-pointer to number and

returns number as its value.

(c-longint-ref c-pointer integer) returns the

long int at the integer byte of c-pointer as a num-

ber.

(c-longint-set! c-pointer integer number) sets

the long int at the integer byte of c-pointer to num-

ber and returns number as its value.

(c-longunsigned-ref c-pointer integer) returns

the unsigned long at the integer byte of c-pointer

as a number.

(c-longunsigned-set! c-pointer integer num-

ber) sets the unsigned long at the integer byte of

c-pointer to number and returns number as its

value.

c-pointer a number that is the address of a struc-

ture outside the Scheme heap, or a string that is a

C-structure within the Scheme heap.

(c-s2cuint-ref c-pointer integer) returns the

S2CUINT at the integer byte of c-pointer as a

number.

(c-s2cuint-set! c-pointer integer number) sets

the S2CUINT at the integer byte of c-pointer to

number and returns number as its value.

(c-shortint-ref c-pointer integer) returns the

short int at the integer byte of c-pointer as a num-

ber.

(c-shortint-set! c-pointer integer number)

sets the short int at the integer byte of c-pointer

to number and returns number as its value.

(c-shortunsigned-ref c-pointer integer) re-

turns the unsigned short at the integer byte of c-

pointer as a number.

(c-shortunsigned-set! c-pointer integer num-

ber) sets the unsigned short at the integer byte

of c-pointer to number and returns number as its

value.

c-sizeof-double size (in bytes) of the C type

double.

c-sizeof-float size (in bytes) of the C type

float.

c-sizeof-int size (in bytes) of the C type int.

c-sizeof-long size (in bytes) of the C type long.

c-sizeof-s2cuint size (in bytes) of the C type

S2CUINT that is defined by Scheme->C to be an

unsigned integer the same size as a pointer.

c-sizeof-short size (in bytes) of the C type

short.

c-sizeof-tscp size (in bytes) of the C type

TSCP that is defined by Scheme->C to represent

tagged Scheme pointers.

(c-string->string c-pointer) returns a Scheme

string that is a copy of the null-terminated string

c-pointer.

(c-tscp-ref c-pointer integer) returns the TSCP

at the integer byte of c-pointer.

(c-tscp-set! c-pointer integer expression) sets

7

the TSCP at the integer byte of c-pointer to expres-

sion and returns expression as its value.

(c-unsigned-ref c-pointer integer) returns the

unsigned at the integer byte of c-pointer as a num-

ber.

(c-unsigned-set! c-pointer integer number)

sets the unsigned at the integer byte of c-pointer

to number and returns number as its value.

c-type syntax for declaring the type of a non-

Scheme procedure, procedure argument, or

global. The allowed types are: pointer, array,
char, int, shortint, longint, unsigned,
shortunsigned, longunsigned, float,
double, tscp, or void.

(car pair) returns the contents of the car field of

the pair. R4RS 16.

(caar pair) returns (car (car pair)). R4RS 16.

(ca...r pair) compositions of car and cdr.
R4RS 16.

(call-with-current-continuation proce-

dure) calls procedure with the current continua-

tion as its argument. R4RS 28.

(call-with-input-file string procedure) calls

procedure with the port that is the result of open-

ing the file string for input. R4RS 29.

(call-with-output-file string procedure)

calls procedure with the port that is the result of

opening the file string for output. R4RS 29.

(case key clause clause ...) syntax for a conditional

expression where key is any expression, and each

clause is of the form ((datum ...) expression expres-

sion ...). The last clause may be an “else clause” of

the form (else expression expression ...). R4RS 9.

(catch-error procedure) calls procedure with no

arguments. If an error occurs while executing pro-

cedure, return a string containing the error mes-

sage. Otherwise return a pair whose car contains

the procedure’s value.

(cdr pair) returns the contents of the cdr field of

the pair. R4RS 16.

(cd...r pair) compositions of car and cdr.
R4RS 16.

(cddddr pair) returns (cdr (cdr (cdr (cdr
pair)))). R4RS 16.

(ceiling number) returns the smallest integer

that is not smaller than its arguments. R4RS 22.

char syntax for declaring a non-Scheme proce-

dure, procedure argument, or global variable as

the C type char. When a char value must be

supplied, an expression of type character must be

supplied. When a char value is returned, a value

of type character will be returned.

(char->integer character) returns an integer

whose value is the ASCII character code of char-

acter. R4RS 25.

(char-alphabetic? character) predicate that re-

turns #t when character is alphabetic. R4RS 25.

(char-ci<=? character character) predicate that

returns #t when the first character is less than

or equal to the second character. Upper case and

lower case letters are treated as though they were

the same character. R4RS 25.

(char-ci<? character character) predicate that

returns #t when the first character is less than

the second character. Upper case and lower case

letters are treated as though they were the same

character. R4RS 25.

(char-ci=? character character) predicate that

returns #t when the first character is equal to

the second character. Upper case and lower case

letters are treated as though they were the same

character. R4RS 25.

(char-ci>=? character character) predicate that

returns #twhen the first character is greater than

or equal to the second character. Upper case and

lower case letters are treated as though they were

the same character. R4RS 25.

(char-ci>? character character) predicate that

returns #twhen the first character is greater than

the second character. Upper case and lower case

letters are treated as though they were the same

character. R4RS 25.

(char-downcase character) returns the lower

case value of character. R4RS 25.

(char-lower-case? letter) predicate that re-

turns #t when letter is lower-case. R4RS 25.

(char-numeric? character) predicate that re-

turns #t when character is numeric. R4RS 25.

(char-ready? optional-input-port) predicate that

8

returns #t when a character is ready on the

optional-input-port. R4RS 30.

(char-upcase character) returns the upper case

value of the character. R4RS 25.

(char-upper-case? letter) predicate that re-

turns #t when letter is upper-case. R4RS 25.

(char-whitespace? character) predicate that re-

turns #t when character is a whitespace charac-

ter. R4RS 25.

(char<=? character character) predicate that re-

turns #t when the first character is less than or

equal to the second character. R4RS 24.

(char<? character character) predicate that re-

turns #t when the first character is less than the

second character. R4RS 24.

(char=? character character) predicate that re-

turns #t when the first character is equal to the

second character. R4RS 24.

(char>=? character character) predicate that re-

turns #t when the first character is greater than

or equal to the second character. R4RS 24.

(char>? character character) predicate that re-

turns #t when the first character is greater than

the second character. R4RS 24.

(char? expression) predicate that returns #t
when expression is a character. R4RS 24.

character Scheme object that represents printed

characters. See #\character, #\character-name,

R4RS 24.

(close-input-port input-port) closes the file as-

sociated with input-port. R4RS 30.

(close-output-port output-port) closes the file

associated with output-port. R4RS 30.

(close-port port) closes the file associated with

port.

(collect) invokes the garbage collector to per-

form a generational collection. Normally, garbage

collection is invoked automatically by the Scheme

system.

(collect-all) invokes the garbage collector to

perform a full collection. Normally, garbage collec-

tion is invoked automatically by the Scheme sys-

tem.

(collect-info) returns a list containing infor-

mation about heap and prcessor usage. The items

in the list (and their position) are: number of bytes

currently allocated (0), current heap size in bytes

(1), application processor seconds (2), garbage col-

lection processor seconds (3), maximum heap size

in bytes (4), full collection limit percent (5).

complex number complex numbers are not sup-

ported in Scheme->C. R4RS 18.

(complex? expression) predicate that returns #t
when expression is a complex number. All

Scheme->C numbers are complex. R4RS 20.

(cond clause clause ...) syntax for a conditional ex-

pression where each clause is of the form (test ex-

pression ...) or (test => procedure). The last clause

may be of the form (else expression expression ...).

R4RS 9.

(cons expression1 expression2) returns a newly al-

located pair that has expression1 as its car, and
expression2 as its cdr. R4RS 16.

(cons* expression expression ...) returns an object

formed by consing the expressions together from

right to left. If only one expression is supplied,

then that expression is returned.

(cos number) returns the cosine of its argument.

R4RS 23.

(current-input-port) returns the current de-

fault input port. R4RS 30.

(current-output-port) returns the current de-

fault output port. R4RS 30.

debug-output-port port used for interactive de-

bugging output. The default value is the same as

stderr-port.

(define symbol expression) syntax that defines

the value of expression as the value of either a top-

level symbol or a local variable. R4RS 12.

(define (symbol formals) body) syntax that de-

fines a procedure that is either the value of a top-

level symbol or a local variable. R4RS 12.

(define (symbol . formal) body) syntax that de-

fines a procedure that is either the value of a top-

level symbol or a local variable. R4RS 12.

(define-c-external symbol c-type string) syn-

tax for a compiler declaration that defines symbol

9

as a non-Scheme global variable with the name

string and the type c-type.

(define-c-external (symbol c-type1...) c-type2
string) syntax for a compiler declaration that de-

fines symbol as a non-Scheme procedure with ar-

guments of the type specified in the list c-type1.

The procedure’s name is string and it returns a

value of type c-type2.

(define-c-external (symbol c-type1... . c-type2)

c-type3 string) syntax for a compiler declaration

that defines symbol as a non-Scheme procedure

that takes a variable number of arguments. The

types of the initial arguments are specified by the

list c-type1. Any additional arguments must be of

the type c-type2. The procedure’s name is string

and it returns a value of type c-type3.

(define-constant symbol expression) syntax

that defines a macro that replaces all occurences

of symbol with the value of expression, evaluated

at the time of the definition.

(define-external symbol1 symbol2) syntax for

a compiler declaration that symbol1 is defined in

module symbol2.

(define-external symbol TOP-LEVEL) syntax

for a compiler declaration that symbol is a top-

level symbol. Its value is to be found via the

obarray.

(define-external symbol1 TOP-LEVEL sym-

bol2) syntax for a compiler declaration that sym-

bol1 is a top-level symbol that is known to be de-

fined in module symbol2. Its value is to be found

via the *obarray*.

(define-external symbol "" string) syntax for a

compiler declaration that symbol has the external

name string.

(define-external symbol string1 string2) syn-

tax for a compiler declaration that symbol is in

the module string1 and has the external name

string1 string2.

(define-external (symbol1 formals) symbol2)

syntax for a compiler declaration that symbol1 is

a Scheme procedure defined in module symbol2.

(define-external (symbol1 . formal) symbol2)

syntax for a compiler declaration that symbol1 is a

Scheme procedure defined in module symbol2.

(define-external (symbol formals) "" string)

syntax for a compiler declaration that symbol is

a procedure that has the external name string.

(define-external (symbol . formal) "" string)

syntax for a compiler declaration that symbol is a

procedure that takes a variable number of argu-

ments and has the external name string.

(define-external (symbol formals) string1

string2) syntax for a compiler declaration that

symbol is a procedure in the module string1 that

has the external name string1 string2.

(define-external (symbol . formal) string1

string2) syntax for a compiler declaration that

symbol is a procedure in the module string1 that

has the external name string1 string2.

(define-in-line (symbol formals) body) syntax

that defines a procedure that is to be compiled “in-

line”.

(define-in-line (symbol . formal) body) syntax

that defines a procedure that is to be compiled “in-

line”.

(define-macro symbol (lambda (form expander)

expression ...)) syntax that defines a macro expan-

sion procedure. Macro expansion is done using the

ideas expressed in Expansion-Passing Style: Be-

yond Conventional Macros, 1986 ACM Conference

on Lisp and Functional Programming, 143-150.

(define-system-file-task file idle-task file-

task) installs the idle-task and file-task procedures

for system file number file. When a Scheme pro-

gram reads from a port and no characters are in-

ternally buffered, the idle-task for each system file

is called. Then, the file-task for each system file

that has input pending is called. As long as no

characters are available on the Scheme port, the

Scheme system will idle, calling the file-task for

each system file as input becomes available. A

system file task is removed by supplying #f as the

idle-task and file-task.

(delay expression) syntax used together with

the procedure force to implement call by need.

R4RS 11.

(display expression optional-output-port) writes

a human-readable representation of expression to

optional-output-port. R4RS 31.

(do (var ...) (test expression ...) command ...) syntax

10

for an iteration construct. Each var defines a local

variable and is of the form (symbol init step) or

(symbol init). R4RS 11.

double syntax for declaring a non-Scheme proce-

dure, procedure argument, or global variable as

the C type double. When a double value must

be supplied, an expression of type number must

be supplied. When a double value is returned, a

value of type number is returned.

(echo port) turns off echoing on port.

(echo port output-port) echos port on output-port.

All characters read from or written to port are also

written to output-port.

else keyword in last clause of cond or case form.

environment the set of all variable bindings in ef-

fect at some point in the program. R4RS 6.

(eof-object? expression) predicate that returns

#t if expression is equal to the end of file object.

R4RS 30.

(enable-system-file-tasks flag) enables (flag

is #t) or disables (flag is #f) system file tasking

and returns the previous system file tasking state.

When the value of flag is the symbol wait, system
file tasking is enabled and the Scheme program is

blocked until there are no system file tasks.

(eq? expression1 expression2) predicate that is the

finest test for equivalence between expression1

and expression2. R
4RS 15.

(equal? expression1 expression2) predicate that is

the coarsest test for equivalence between expres-

sion1 and expression2. R
4RS 15.

(eqv? expression1 expression2) predicate that is

the medium test for equivalence between expres-

sion1 and expression2. R
4RS 13.

(error symbol format-template expression ...)

reports an error. The procedure name is

symbol and the error message is produced

by the format-template and optional expres-

sions. The procedure error is equivalent

to (lambda x (apply *error-handler* x)).
See *error-handler*.

(eval expression) evaluates expression. Any

macros in expression are expanded before evalu-

ation.

(eval-when list expression ...) syntax to evalu-

ate expressions when the current situation is in

list. When this form is evaluated by the Scheme

interpreter and eval is a member of the situa-

tion list, then the expressions will be evaluated.

When this form is evaluated by the Scheme com-

piler and compile is a member of the situation

list, then the expressions will be evaluated within

the compiler. When this form is evaluated by the

Scheme compiler, and load is a member of the sit-

uation list, then the compiler will compile the form

(begin expression ...)).

(even? integer) predicate that returns #t if integer

is even. R4RS 21.

exact fixed numbers are exact, all other num-

bers are not. R4RS 14.

(exact->inexact number) returns the inexact

representation of number. R4RS 23.

(exact? number) predicate that returns #t if

number is exact. R4RS 21.

(exit) returns from the current

read-eval-print procedure.

(exp number) returns exponential function of

number. R4RS 22.

(expand expression) returns the value of ex-

pression after all macro expansions. See

define-macro.

(expand-once expression) returns the value of

expression after one macro expansion. See

define-macro.

expression a Scheme construct that returns a

value. R4RS 7.

(expt number1 number2) returns number1 raised

to the power number2. R
4RS 23.

fix format descriptor for compatibility with R3RS.

fixed Scheme->C internal representation for

small integers. A fixed value is represented in

a “pointer size” word with two bits used by the

tag. With 32-bit pointers, this yields a maximum

value of 2
29 − 1 or 536,870,911 and a minimum

value of −2
29 or −536,870,912. With 64-bit point-

ers, this yields a maximum value of 2
61 − 1 or

2,305,843,009,213,693,951 and a minimum value

of −2
61 or −2,305,843,009,213,693,952.

11

(fixed->float fixed) returns the float represen-

tation of fixed.

(fixed? expression) predicate that returns #t
when expression is a fixed.

float syntax for declaring a non-Scheme proce-

dure, procedure argument, or global variable as

the C type float. When a float value must

be supplied, an expression of type number must

be supplied. When a float value is returned, a

value of type number is returned.

float Scheme->C internal floating point represen-

tation. This is typically 64-bits.

(float->fixed float) returns the fixed number

that best represents the value of float.

(float? expression) predicate that returns #t if

expression is a float value.

(floor number) returns the largest integer not

larger than number. R4RS 22.

(flush-buffer optional-output-port) forces out-

put of all characters buffered in optional-output-

port.

(for-each procedure list list ...) applies procedure

to each element of the lists in order. R4RS 28.

(force promise) returns the forced value of a

promise. R4RS 28.

formals a symbol or a list of symbols that are the

arguments. R4RS 8.

(format #f format-template expression ...) returns

a string that is the result of outputting the expres-

sions according to the format-template.

(format format-template expression ...) returns a

string that is the result of outputting the expres-

sions according to the format-template.

(format output-port format-template expression

...) output the expressions to output-port according

to the format-template.

(format #t format-template expression ...) output

the expressions to the current output port accord-

ing to the format-template.

format descriptor a list that describes the

type of output conversion to be done by

number->string. The supported forms are

(int), (fix integer), and (sci integer). R4RS 21.

format-template a string consisting of format de-

scriptors and literal characters. A format descrip-

tor is ~ followed by some other character. When

one is encountered, it is interpreted. Literal char-

acters are output as is. See ~a, ~A, ~c, ~C, ~s, ~S,
~%, ~~.

(gcd number ...) returns the greatest common di-

visor of its arguments. R4RS 22.

(get-output-string string-output-port) re-

turns the string associated with string-output-

port. The string associated with the string-output-

port is initially set to "".

(getprop symbol expression) returns the value

that has the key eq? to expression from symbol’s

property list. If there is no value associated with

expression, then #f is returned.

(getprop-all symbol) returns the symbol’s prop-

erty list.

(implementation-information) returns a list

of string or #f values containing information

about the Scheme implementation. The list is of

the form (implementation-name version machine

processor operating-system filesystem features ...).

(if expression1 expression2) syntax for a condi-

tional expression. R4RS 8.

(if expression1 expression2 expression3) syntax for

a conditional expression. R4RS 8.

(include string) syntax to include the contents of

the file string at this point in the Scheme compi-

lation. Search directories may be specified by the

-I command flag.

inexact float numbers are inexact. R4RS 14.

(inexact->exact number) returns the exact rep-

resentation of number. R4RS 23.

(inexact? number) predicate that returns #t
when number is inexact. R4RS 21.

input-port Scheme object that can deliver charac-

ters on command. R4RS 29.

(input-port? expression) predicate when re-

turns #t when expression is an input-port.

R4RS 29.

int syntax for declaring a non-Scheme procedure,

procedure argument, or global variable as the C

type int. When a int value must be supplied,

12

an expression of type number must be supplied.

When a int value is returned, a value of type

number is returned.

int format descriptor for compatibility with R3RS.

integer integers are represented by both fixed and

float values. R4RS 18.

(integer->char integer) returns the character

whose ASCII code is equal to integer. R4RS 25.

(integer? expression) predicate that returns #t
when expression is an integer. R4RS 20.

interned symbols that are contained in

obarray are interned.

(lambda formals body) the ultimate imperative,

the ultimate declarative. R4RS 8.

(last-pair list) returns the last pair of list.

(lcm number ...) returns the least common multi-

ple of its arguments. R4RS 22.

(length list) returns the length of list. R4RS 17.

(let bindings body) syntax for a binding construct

that computes initial values before any bindings

are done. R4RS 10.

(let symbol bindings body) syntax for a general

looping construct. R4RS 11.

(let* bindings body) syntax for a binding con-

struct that computes initial values and performs

bindings sequentially. R4RS 10.

(letrec bindings body) syntax for a binding con-

struct that binds the variables before the initial

values are computed. R4RS 10.

letter an alphabetic character. R4RS 25.

list the empty list, or a pair whose cdr is a list.

R4RS 16.

(list expression ...) returns a list of its argu-

ments. R4RS 17.

(list? expression) predicate that returns #t
when expression is a list. R4RS 16.

(list->string list) returns the string formed

from the characters in list. R4RS 26.

(list->vector list) returns a vector whose ele-

ments are the members of list. R4RS 27.

(list-ref list integer) returns the integer ele-

ment of list. Elements are numbered starting at

0. R4RS 17.

(list-tail list integer) returns the sublist of list

obtained by omitting the first integer elements.

R4RS 17.

(load string) loads the expressions in the file

string into the Scheme interpreter. The results of

the expressions are printed on the current output

port. R4RS 31.

(loade string) loads the expressions in the file

string into the Scheme interpreter. The contents

of the file and the results of the expressions are

printed on the current output port.

(loadq string) loads the expressions in the file

string into the Scheme interpreter. The results of

the expressions are not printed.

(log number) returns the natural logarithm of

number. R4RS 22.

longint syntax for declaring a non-Scheme pro-

cedure, procedure argument, or global variable as

the C type long int. When a long int value

must be supplied, an expression of type number

must be supplied. When a long int value is re-

turned, a value of type number is returned.

longunsigned syntax for declaring a non-Scheme

procedure, procedure argument, or global variable

as the C type long unsigned. When a long
unsigned value must be supplied, an expression

of type number must be supplied. When a long
unsigned value is returned, a value of type num-

ber is returned.

(make-string integer) returns a string of length

integer with unknown elements. R4RS 25.

(make-string integer char) returns a string of

length integerwith all elements initialized to char.

R4RS 25.

(make-vector integer) returns a vector of length

integer with unknown elements. R4RS 26.

(make-vector integer expression) returns a vec-

tor of length integer with all elements set to ex-

pression. R4RS 26.

(map procedure list list ...) returns a list con-

structed by applying procedure to each element of

13

the lists. The order of application is not defined.

R4RS 27.

(max number number ...) returns the maximum of

its arguments. R4RS 21.

(member expression list) returns the first sublist

of list such that (equal? expression (car sublist))

is true. If no match occurs, then #f is returned.

R4RS 17.

(memq expression list) returns the first sublist of

list such that (eq? expression (car sublist)) is true.

If no match occurs, then #f is returned. R4RS 17.

(memv expression list) returns the first sublist of

list such that (eqv? expression (car sublist)) is

true. If no match occurs, then #f is returned.

R4RS 17.

(min number number ...) returns the minimum of

its arguments. R4RS 21.

(module symbol clause ...) syntax to declare mod-

ule information for the Scheme->C compiler. The

module form must be the first item in the source

file. The module name is a symbol that must be a

legal C identifier. Using this information, the com-

piler is able to construct an object module that is

similar in structure to a Modula 2 module. Follow-

ing the module name come optional clauses. If the

module is to provide the “main” program, then a

clause of the form (main symbol) is provided that

indicates that symbol is the initial procedure. It

will be invoked with one argument that is a list

of strings that are the arguments that the pro-

gram was invoked with. A minimum (and default)

heap size can be specified by the clause (HEAP in-

teger), where the size is specified in megabytes.

The user may control that top-level symbols in

this module are visible as top-level symbols by in-

cluding a clause of the form (top-level symbol

...). If this clause occurs, then only those sym-

bols specified will be made top-level. All other

top-level symbols in the module will appear at the

top-level with names of the form: module symbol.

If a top-level clause is not provided, then all

top-level symbols in the module will be made top-

level. The final clause, (with symbol ...) indicates

that this module will be linked with other mod-

ules. Normally the intermodule linkages are au-

tomatically infered by including all modules that

have external references. However, this mecha-

nism is not sufficient to pick up those objects that

are only referenced at runtime.

(modulo integer1 integer2) returns the modulo of

its arguments. The sign of the result is the sign of

the divisor. R4RS 22.

(negative? number) predicate that returns #t
when number is negative. R4RS 21.

(newline optional-output-port) outputs a newline

character on the optional-output-port. R4RS 31.

(not expression) predicate that returns #t when

expression is #f or (). R4RS 13.

(null? expression) predicate that returns #t
when expression is (). R4RS 16.

number Scheme->C has two internal representa-

tions for numbers: fixed and float. When an arith-

metic operation is to be performed with a float ar-

gument, all arguments will be converted to float as

needed, and then the operation will be performed.

Automatic conversion back to fixed is never done.

R4RS 18.

(number->string number format descriptor) re-

turns a string that is the printed representation

of number as specified by format descriptor. For

compatibility with R3RS.

(number->string number) returns a string

with the printed representation of the number.

R4RS 23.

(number->string number radix) returns a string

with the printed representation of the number in

the given radix. Radix must be 2, 8, 10, or 16.

R4RS 23.

(number? expression) predicate that returns #t
when expression is a number. R4RS 20.

(odd? integer) predicate that returns #t when in-

teger is odd. R4RS 21.

(open-file string1 string2) returns a port for file

string1 that is opened using the operating system’s

fopen option string2.

(open-input-file string) returns an input port

capable of delivering characters from the file

string. R4RS 30.

(open-input-string string) returns an input

port capable of delivering characters from the

string.

14

(open-output-file string) returns an output

port capable of delivering characters to the file

string. R4RS 30.

(open-output-string) returns an output port

capable of delivering characters to a string. See

get-output-string.

(optimize-eval option...) controls the optimiza-

tion done on interpreted programs. When no op-

tion is supplied, minimal optimization is done.

When call is specified, calls to top-level pro-

cedures that are not interpreted are optimized.

When rewrite is specified, calls to top-level pro-

cedures that take variable number of arguments

are rewritten. This option may cause some break-

points to be missed. Both call and rewritemay

be specified.

optional-input-port if present, it must be an input-

port. If not present, then it is the value returned

by current-input-port.

optional-output-port if present, it must be an

output-port. If not present, then it is the value

returned by current-output-port.

(or expression ...) syntax for a conditional expres-

sion. R4RS 9.

pair record structure with two fields: car and cdr.

R4RS 15.

(pair? expression) predicate that returns #t
when expression is a pair. R4RS 16.

(peek-char optional-input-port) returns a copy

of the next character available on optional-input-

port. R4RS 30.

pointer syntax for declaring a non-Scheme pro-

cedure, procedure argument, or global varible as

being some type of C pointer. When a value must

be supplied, an expression of the type string, pro-

cedure, or number is supplied. This will result

in either the address of the first character of the

string, the address of the code associated with the

procedure, or the value of the number being used.

A pointer value is returned as an non-negative

number.

port Scheme object that is capable of delivering or

accepting characters on demand. R4RS 29.

(port->stdio-file port) returns the standard

I/O FILE pointer for port, or #f if the port does

not use standard I/O.

(positive? number) predicate that returns #t
when number is positive. R4RS 21.

(pp expression optional-output-port) pretty-prints

expression on optional-output-port.

(pp expression string) pretty-prints expression to

the file string.

predicate function that returns #t when the con-

dition is true, and #f when the condition is false.

R4RS 13.

(procedure? expression) predicate that returns

#t when expression is a procedure. R4RS 27.

(proceed) return from the innermost

read-eval-print loop with an unspecified

value.

(proceed) resume the computation that previ-

ously timed out in an embedded Scheme->C sys-

tem, or was stopped at a breakpoint.

(proceed expression) return from the innermost

read-eval-print loop with expression as the

value. At the outermost level, expression must be

an integer as it will be used as the argument for a

call to the C library procedure exit.

(proceed expression) return expression as the

value of a procedure that stopped at a breakpoint.

(proceed?) force a breakpoint while resuming

the computation that previously timed out in an

embedded Scheme->C system.

(putprop symbol expression1 expression2) stores

expression2 using key expression1 on symbol’s

property list. See getprop.

(quasiquote back-quote-template) syntax for a

vector or list constructor. R4RS 11.

(quote expression) syntax whose result is expres-

sion. R4RS 7.

(quotient integer1 integer2) returns the quotient

of its arguments. The sign is the sign of the prod-

uct of its arguments. R4RS 22.

(rational? number) predicate that returns #t
when its argument is a rational number. This is

true for any number in Scheme->C. R4RS 20.

(read optional-input-port) returns the next read-

able object from optional-input-port. Revived3 30.

15

(read-char optional-input-port) returns the next

character from optional-input-port, updating the

port to point to the next character. Revived3 30.

(read-eval-print expression ...) starts a new

read-eval-print loop. The optional expressions

allow one to specify the prompt or the header:

PROMPT string HEADER string. Typing control-D

at the prompt will terminate the procedure. See

reset, exit, eval, proceed.

(real? number) predicate that returns #t when

its argument is a real number. This is true in

Scheme->C for any number. R4RS 20.

record a heterogenous mutable structure whose

elements are indexed by integers. The valid in-

dexes of a record are the exact non-negative inte-

gers less than the length of the record. A record

differs from a vector in that a record may have

method procedures that control how it’s output,

compared, and evaluated.

(remainder integer1 integer2) returns the remain-

der of its arguments. The sign is the sign of inte-

ger1. R
4RS 22.

(remove expression list) returns a new list that is

a copy of list with all items equal? to expression

removed from it.

(remove! expression list) returns list having

deleted all items equal? to expression from it.

(remove-file string) removes the file named

string.

(remq expression list) returns a new list that is

a copy of list with all items eq? to expression re-

moved from it.

(remq! expression list) returns list having deleted

all items eq? to expression from it.

(remv expression list) returns a new list that is a

copy of list with all items eqv? to expression re-

moved from it.

(remv! expression list) returns list having deleted

all items eqv? to expression from it.

(rename-file string1 string2) changes the name

of the file named string1 to string2.

(reset) returns to the current

read-eval-print loop.

(reset-bpt) indicates that the caller wishes to

cancel the resumption of computation at the point

where a breakpoint occurred in an embedded

Scheme->C system.

(reset-error) indicates that the caller is fin-

ished examining the last retained error state in

an embedded Scheme->C system.

(reverse list) returns a new list with the ele-

ments of list in reverse order. R4RS 17.

(round number) returns number rounded to the

closest integer. R4RS 22.

S2CUINT C type defined by Scheme->C to be an

unsigned integer that is the same size as a pointer.

sc-pointer a Scheme object that is represented by

a tagged pointer to one or more words of memory.

sc... all modules that compose the Scheme->C
runtime system have module names begining with

the letters sc. All procedures and external vari-

ables in these modules have names that begin

with sc... .

scc shell command to invoke the Scheme->C
Scheme compiler. See the man page.

SCGCINFO environment variable that when set to

1 will log garbage collection information on stderr.

This variable is overridden by the -scgc com-

mand line flag.

SCHEAP environment variable that controls the

initial heap size. It is set to the desired size in

megabytes. If not set, then the default in the main

program will be used. If a default size is not sup-

plied, then the implementation default is used.

This variable is overridden by the -sch command

line flag.

SCLIMIT environment variable that controls the

amount of heap retained after a generational

garbage collection that will force a full collection.

It is expressed as a percent of the heap. The de-

fault value is 40. This variable is overridden by

the -scl command line flag.

SCMAXHEAP environment variable that controls

the maximum heap size. It is set to the desired

size in megabytes. If not set and the -scmh com-

mand line flag is not supplied, the maximum heap

size is five times the initial heap size. This vari-

able is overridden by the -scmh command line

flag.

16

(scheme-byte-ref sc-pointer integer) returns

the byte at the integer byte of sc-pointer as a num-

ber.

(scheme-byte-set! sc-pointer integer number)

sets the byte at the integer byte of sc-pointer to

number. The procedure returns number as its

value.

(scheme-int-ref sc-pointer integer) return the

int at the integer byte of sc-pointer as a number.

(scheme-int-set! sc-pointer integer number)

sets the int at the integer byte of sc-pointer to num-

ber. The procedure returns number as its value.

(scheme-s2cuint-ref sc-pointer integer) re-

turns the S2CUINT at the integer byte of sc-

pointer.

(scheme-s2cuint-set! sc-pointer integer ex-

pression) sets the S2CUINT at the integer byte of

sc-pointer to expression. The procedure returns ex-

pression as its value.

(scheme-tscp-ref sc-pointer integer) returns

the TSCP at the integer byte of sc-pointer.

(scheme-tscp-set! sc-pointer integer expres-

sion) sets the TSCP at the integer byte of sc-

pointer to expression. The procedure returns ex-

pression as its value.

sci shell command to invoke the Scheme->C
Scheme interpreter. See the man page.

sci format descriptor for compatibility with R3RS.

(set! symbol expression) syntax to set the loca-

tion bound to symbol to the value of expression.

R4RS 9.

(set-car! pair expression) sets the car field of

pair to expression. R4RS 16.

(set-cdr! pair expression) sets the cdr field of

pair to expression. R4RS 16.

(set-gcinfo! integer) sets the flag controlling

the printing of garbage collection statistics to in-

teger. See -scgc.

(set-generation-limit! integer) sets the full

collection limit to integer. See -scl.

(set-maximum-heap! integer) sets the maximum

heap size to integer megabytes. See -scmh.

(set-stack-size! expression) sets the size of

the stack used by Scheme->C to expression bytes.

This value is ignored if the system does not do ex-

plicit stack overflow checking.

(set-time-slice! expression) sets the time slice

used by the Scheme->C to expression ticks. This

value is decremented each time a Scheme proce-

dure is called, and the time slice expires when it

becomes zero. This value is ignored if the system

does not do explicit time slicing.

(set-top-level-value! symbol expression)

sets the top-level location bound to symbol to

value.

(set-write-circle! boolean optional-output-

port) controls circular object detection on output

to optional-output-port. If boolean is #t, then cir-

cular objects are printed as “...”. If boolean is #f,
circular object detection is disabled.

(set-write-length! integer optional-output-

port) sets the list and vector length limits of

optional-output-port to integer. Vectors and lists

longer than integer have their remaining elements

printed as “...”.

(set-write-length! #f optional-output-port)

allows arbitrary length list and vector printing on

optional-output-port.

(set-write-level! integer optional-output-

port) sets the number of levels that nested vectors

and lists are printed on optional-output-port to

integer. Vectors and lists nesting deeper than this

level are printed as “#”.

(set-write-level! #f optional-output-port) al-

lows arbitrarily deep nested list and vector print-

ing on optional-output-port.

(set-write-pretty! boolean optional-output-

port) controls “pretty-printing” on optional-

output-port. If boolean is #t, then output is

printed in a more readable form in write-width
wide lines. A value of #f enables normal output.

(set-write-width! integer optional-output-

port) sets the width of optional-output-port to

integer.

shortint syntax for declaring a non-Scheme pro-

cedure, procedure argument, or global variable as

the C type short int. When a short int value

must be supplied, an expression of type number

17

must be supplied. When a short int value is re-

turned, a value of type number is returned.

shortunsigned syntax for declaring a non-

Scheme procedure, procedure argument, or global

variable as the C type short unsigned. When a

unsigned short value must be supplied, an ex-

pression of type number must be supplied. When

a short unsigned value is returned, a value of

type number is returned.

(sin number) returns the sine of its argument.

R4RS 23.

(signal number expression) provides a signal

handler for the operating system dependent sig-

nal number. The expression is the signal handler

and is either a procedure or a number. When a

procedure is supplied, it is called with the signal

number when the signal is present. Numeric han-

dler values are interpreted by the underlying op-

erating system. The previous value of the signal

handler is returned.

(sqrt number) returns the square root of its argu-

ment. R4RS 23.

(stack-size) returns the size in bytes of

Scheme->C’s stack.

stderr-port port to output characters to stderr.

stdin-port port to input characters from stdin.

stdout-port port to output characters to stdout.

string sequence of characters. The valid indexes of

a string are exact non-negative integers less than

the length of the string.R4RS 25.

(string char ...) returns a newly allocated string

whose elements contain the given arguments.

R4RS 25.

(string->list string) returns a newly con-

structed list that contains the elements of string.

R4RS 25.

(string->number string) returns a number ex-

pressed by string. If string is not a syntactically

valid notation for a number then it returns #f.
R4RS 24.

(string->number string number) returns a num-

ber expressed by string with number the default

radix. Radix must be 2, 8, 10, or 16. If string

is not a syntactically valid notation for a number

then it returns #f. R4RS 24.

(string->symbol string) returns the interned

symbol whose name is string. R4RS 18.

(string->uninterned-symbol string) returns

an uninterned symbol whose name is string.

(string-append string string ...) returns a new

string whose characters are the concatenation of

the of the given strings. Upper and lower case

letters are treated as though they were the same

character. R4RS 26.

(string-ci<=? string1 string2) predicate that re-

turns #t when string1 is less than or equal to

string2. Upper and lower case letters are treated

as though they were the same character. R4RS 26.

(string-ci<? string1 string2) predicate that re-

turns #t when string1 is less than string2. Upper

and lower case letters are treated as though they

were the same character. R4RS 26.

(string-ci=? string1 string2) predicate that re-

turns #t when string1 is equal to string2. Upper

and lower case letters are treated as though they

were the same character. R4RS 26.

(string-ci>=? string1 string2) predicate that re-

turns #t when string1 is greater than or equal to

string2. Upper and lower case letters are treated

as though they were the same character. R4RS 26.

(string-ci>? string1 string2) predicate that re-

turns #t when string1 is greater than string2. Up-

per and lower case letters are treated as though

they were the same character. R4RS 26.

(string-copy string) returns a new string whose

characters are those of the given string. R4RS 26.

(string-fill! string char) stores char in every

element of string. R4RS 26.

(string-length string) returns the length of

string. R4RS 25.

(string-ref string integer) returns character

that is the integer element of string. The first ele-

ment is 0. R4RS 25.

(string-set! string integer character) sets the

integer element of string to character. The first

element is 0. R4RS 26.

(string<=? string1 string2) predicate that re-

turns #t when string1 is less than or equal to

string2. R
4RS 26.

18

(string<? string1 string2) predicate that returns

#t when string1 is less than string2. R
4RS 26.

(string=? string1 string2) predicate that returns

#t when string1 is equal to string2. R
4RS 26.

(string>=? string1 string2) predicate that re-

turns #t when string1 is greater than or equal to

string2. R
4RS 26.

(string>? string1 string2) predicate that returns

#t when string1 is greater than string2. R
4RS 26.

(string? expression) predicate that returns #t
when expression is a string. R4RS 25.

(substring string integer1 integer2) returns a

string consisting of integer2-integer1 elements of

string starting at element integer1. R
4RS 26.

(symbol? expression) predicate that returns #t
when expression is a symbol. R4RS 18.

(symbol->string symbol) returns the name of

symbol as a string. R4RS 18.

syntax indicates a form that is evaluated in a man-

ner that is specific to the form. R4RS 5.

(system string) issue the shell command con-

tained in string and return the result. See the

man page for the system procedure for details.

(tan number) returns the tangent of its argument.

R4RS 23.

(time-of-day) returns a system dependent

string representing the current time and date.

(time-slice) returns the current time slice

value.

(top-level) returns control to the “top-level”

read-eval-print loop.

(top-level-value symbol) returns the value in

the location that is the “top-level” binding of sym-

bol.

(trace) returns a list of the procedures being

traced.

(trace symbol symbol ...) enables tracing on the

procedures that are the values of the symbols.

trace-output-port port used for trace output.

The default value is the same as stdout-port.

(transcript-off) turns off the transcript.

R4RS 31.

(transcript-on string) starts a transcript on the

file string. R4RS 31.

(truncate number) returns the truncated value

of number. R4RS 22.

tscp syntax for declaring a non-Scheme proce-

dure, procedure argument, or global variable as

the C type TSCP. The type TSCP is a tagged pointer

to a Scheme object. When a tscp value must be

supplied, any expression may be supplied. When

a tscp value is returned, any type of value may

be returned.

(unbpt) syntax to remove all breakpoints.

(unbpt symbol symbol ...) syntax to remove break-

points from the named procedures.

(uninterned-symbol? symbol) predicate that re-

turns #t if symbol is not interned.

(unless expression1 expression2 ...) syntax for a

conditional form that is equivalent to (if (not ex-

pression1) (begin expression2 ...)).

(unquote expression) syntax to evaluate the

expression and replaces it in the back-quote-

template. R4RS 12.

(unquote-splicing expression) syntax to eval-

uate the expression and splices it into the back-

quote-template. R4RS 12.

unsigned syntax for declaring a non-Scheme pro-

cedure, procedure argument, or global variable as

the C type unsigned. When a unsigned value

must be supplied, an expression of type number

must be supplied. When a unsigned value is re-

turned, a value of type number is returned.

(untrace) syntax to remove tracing from all pro-

cedures.

(untrace symbol symbol ...) syntax to remove

tracing from the named procedures.

variable R4RS 6.

vector a heterogenous mutable structure whose el-

ements are indexed by integers. The valid indexes

of a vector are the exact non-negative integers less

than the length of the vector. R4RS 26.

(vector expression ...) returns a newly allocated

vector whose elements contain the given argu-

ments. R4RS 27.

19

(vector-fill! vector expression) stores expres-

sion in every element of vector. R4RS 27.

(vector-length vector) returns the number of

elements in vector. R4RS 27.

(vector->list vector) returns a newly created

list of the objects contained in the elements of the

vector. R4RS 27.

(vector-ref vector integer) returns the contents

of element integer of vector. The first element is 0.

R4RS 27.

(vector-set! vector integer expression) sets ele-

ment integer of vector to expression. The first ele-

ment is 0. R4RS 27.

(vector? expression) predicate that returns #t
when expression is a vector. R4RS 26.

void syntax for declaring a non-Scheme proce-

dure as returning the C type void. The value of

such a procedure may not be used.

(wait-system-file expression) waits for input

on the file with the system file number expression.

When input is available, the procedure returns. If

expression is equal to #f, then the procedure will

not return until all tasks have been completed.

(weak-cons expression1 expression2) returns a

newly allocated pair that has expression1 as its

car, and expression2 as its cdr. If the garbage

collector discovers that pointers to an object only

exist in the car’s of pairs created by weak-cons,
then it may recover the object and set the car’s in
those pairs to #f.

(when expression1 expression2 ...) syntax for a con-

ditional form that is equivalent to (if expression1

(begin expression2 ...)).

(when-unreferenced expression procedure) ap-

plies the clean-up procedure procedure (with the

object represented by expression as its argument)

at some point in the future when the object rep-

resented by expression is no longer referenced by

the program. The procedure returns either the

cleanup procedure supplied by an earlier call to

when-unreferenced, or #fwhen no cleanup pro-

cedure was defined.

(when-unreferenced expression #f) returns ei-

ther the cleanup procedure for the object repre-

sented by expression or #f when no cleanup pro-

cedure was defined. In either case, the Scheme

system will take no action when the object repre-

sented by expression is no longer referenced by the

program.

(with-input-from-file string procedure)

opens the file string, makes its port the de-

fault input-port, then calls procedure with no

arguments. R4RS 30.

(with-output-to-file string procedure) opens

the file string, makes its port the default output-

port, then calls procedure with no arguments.

R4RS 30.

(write expression optional-output-port) outputs

expression to optional-output-port in a machine-

readable form. R4RS 31.

(write-char character optional-output-port) out-

puts character to optional-output-port. R4RS 31.

(write-circle optional-output-port) returns a

boolean indicating whether circular objects are de-

tected when output to optional-output-port.

(write-count optional-output-port) returns the

number of characters on the current line in

optional-output-port.

(write-length optional-output-port) returns ei-

ther an integer indicating the maximum length

vector or list printed on optional-output-port, or

#f indicating that arbitrary length objects are

printed on optional-output-port.

(write-level optional-output-port) returns ei-

ther an integer indicating the maximum nest-

ing depth of objects that are printed on optional-

output-port, or #f indicating that arbitrary depth

objects are printed on optional-output-port.

(write-pretty optional-output-port) returns a

boolean indicating whether pretty-printing is

done on optional-output-port.

(write-width optional-output-port) returns the

width of optional-output-port in characters.

(zero? number) predicate that returns #t when

number is zero. R4RS 21.

~% format descriptor to output a newline charac-

ter.

~~ format descriptor to output a ~.

~A format descriptor to output the next expression

using display.

20

~a format descriptor identical to ~A.

~C format descriptor to output the next expression

(that must be a character) using write-char.

~c format descriptor identical to ~C.

~S format descriptor to output the next expression

using write.

~s format descriptor identical to ~S.

21

