Module: sage.modular.modform.ambient_R
Modular Forms over a Non-minimal Base Ring
Class: ModularFormsAmbient_R
self, M, base_ring) |
Ambient space of modular forms over a ring other than QQ.
sage: M = ModularForms(23,2,base_ring=GF(7)) ## indirect doctest sage: M Modular Forms space of dimension 3 for Congruence Subgroup Gamma0(23) of weight 2 over Finite Field of size 7 sage: M == loads(dumps(M)) True
Special Functions: __init__,
_compute_q_expansion_basis,
_repr_
self, [prec=None]) |
Compute q-expansions for a basis of self to precision prec.
sage: M = ModularForms(23,2,base_ring=GF(7)) sage: M._compute_q_expansion_basis(5) [1 + 5*q^3 + 5*q^4 + O(q^5), q + 6*q^3 + 6*q^4 + O(q^5), q^2 + 5*q^3 + 6*q^4 + O(q^5)]
self) |
String representation for self.
sage: M = ModularForms(23,2,base_ring=GF(7)) ## indirect doctest sage: M._repr_() 'Modular Forms space of dimension 3 for Congruence Subgroup Gamma0(23) of weight 2 over Finite Field of size 7'