2.7.1 Univariate Polynomials

There are three ways to create polynomial rings.

sage: R = PolynomialRing(QQ, 't')
sage: R
Univariate Polynomial Ring in t over Rational Field

This creates a polynomial ring and tells Sage to use (the string) `t' as the indeterminate when printing to the screen; however, this does not define the symbol t for use in Sage, so you cannot use it to enter a polynomial (such as t2+1) belonging to R.

An alternate way is

sage: S = QQ['t']
sage: S == R
True
This has the same issue regarding t.

A third very convenient way is

sage: R.<t> = PolynomialRing(QQ)
or
sage: R.<t> = QQ['t']
or even
sage: R.<t> = QQ[]
This has the additional side effect that it defines the variable t to be the indeterminate of the polynomial ring, so you can easily construct elements of R, as follows. (Note that the third way is very similar to the constructor notation in Magma, and just as in Magma it can be used for a wide range of objects.)

sage: poly = (t+1) * (t+2); poly
t^2 + 3*t + 2
sage: poly in R
True

Whatever method you use to define a polynomial ring, you can recover the indeterminate as the 0th generator:

sage: R = PolynomialRing(QQ, 't')
sage: t = R.0
sage: t in R
True

Note that a similar construction works with the complex numbers: the complex numbers can be viewed as being generated over the real numbers by the symbol i; thus we have the following:

sage: CC
Complex Field with 53 bits of precision
sage: CC.0  # 0th generator of CC
1.00000000000000*I

For polynomial rings, you can obtain both the ring and its generator, or just the generator, during ring creation as follows:

sage: R, t = QQ['t'].objgen()
sage: t    = QQ['t'].gen()
sage: R, t = objgen(QQ['t'])
sage: t    = gen(QQ['t'])

Finally we do some arithmetic in Q[t].

sage: R, t = QQ['t'].objgen()
sage: f = 2*t^7 + 3*t^2 - 15/19
sage: f^2
4*t^14 + 12*t^9 - 60/19*t^7 + 9*t^4 - 90/19*t^2 + 225/361
sage: cyclo = R.cyclotomic_polynomial(7); cyclo
t^6 + t^5 + t^4 + t^3 + t^2 + t + 1
sage: g = 7 * cyclo * t^5 * (t^5 + 10*t + 2)
sage: g
7*t^16 + 7*t^15 + 7*t^14 + 7*t^13 + 77*t^12 + 91*t^11 + 91*t^10 + 84*t^9 
       + 84*t^8 + 84*t^7 + 84*t^6 + 14*t^5
sage: F = factor(g); F
(7) * t^5 * (t^5 + 10*t + 2) * (t^6 + t^5 + t^4 + t^3 + t^2 + t + 1)
sage: F.unit()
7
sage: list(F)
[(t, 5), (t^5 + 10*t + 2, 1), (t^6 + t^5 + t^4 + t^3 + t^2 + t + 1, 1)]
Notice that the factorization correctly takes into account and records the unit part.

If you were to use, e.g., the R.cyclotomic_polynomial function a lot for some research project, in addition to citing Sage you should make an attempt to find out what component of Sage is being used to actually compute the cyclotomic polynomial and cite that as well. In this case, if you type R.cyclotomic_polynomial?? to see the source code, you'll quickly see a line f = pari.polcyclo(n) which means that PARI is being used for computation of the cyclotomic polynomial. Cite PARI in your work as well.

Dividing two polynomials constructs an element of the fraction field (which Sage creates automatically).

sage: x = QQ['x'].0
sage: f = x^3 + 1; g = x^2 - 17
sage: h = f/g;  h
(x^3 + 1)/(x^2 - 17)
sage: h.parent()
Fraction Field of Univariate Polynomial Ring in x over Rational Field

Using Laurent series, one can compute series expansions in the fraction field of QQ[x]:

sage: R.<x> = LaurentSeriesRing(QQ); R
Laurent Series Ring in x over Rational Field
sage: 1/(1-x) + O(x^10)
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + O(x^10)

If we name the variable differently, we obtain a different univariate polynomial ring.

sage: R.<x> = PolynomialRing(QQ)
sage: S.<y> = PolynomialRing(QQ)
sage: x == y
False
sage: R == S
False
sage: R(y)
x
sage: R(y^2 - 17)
x^2 - 17

The ring is determined by the variable. Note that making another ring with variable called x does not return a different ring.

sage: R = PolynomialRing(QQ, "x")
sage: T = PolynomialRing(QQ, "x")
sage: R == T
True      
sage: R is T
True
sage: R.0 == T.0
True

Sage also has support for power series and Laurent series rings over any base ring. In the following example we create an element of F7[[T]] and divide to create an element of F7((T)).

sage: R.<T> = PowerSeriesRing(GF(7)); R
Power Series Ring in T over Finite Field of size 7
sage: f = T  + 3*T^2 + T^3 + O(T^4)
sage: f^3
T^3 + 2*T^4 + 2*T^5 + O(T^6)
sage: 1/f
T^-1 + 4 + T + O(T^2)
sage: parent(1/f)
Laurent Series Ring in T over Finite Field of size 7

You can also create power series rings using a double-brackets shorthand:

sage: GF(7)[['T']]
Power Series Ring in T over Finite Field of size 7

See About this document... for information on suggesting changes.