public class Point extends SBase
A point is specified via the required attributes 'x', 'y' and an optional
attribute 'z', all of which are of type double. If the attribute z is not
specified, the object is a two dimensional object. The Point
class also
has an optional attribute id of type SId. While not used in the
&ldquolayout&rdquo package, it can be used by programs to refer to the
elements.
Constructor and Description |
---|
Point()
Creates a new point with x,y and z set to 0.0.
|
Point(LayoutPkgNamespaces layoutns)
Constructor.
|
Point(LayoutPkgNamespaces layoutns,
double x,
double y)
Creates a new point with the given coordinates.
|
Point(LayoutPkgNamespaces layoutns,
double x,
double y,
double z)
Creates a new point with the given coordinates.
|
Point(long level)
Creates a new point with x,y and z set to 0.0.
|
Point(long level,
long version)
Creates a new point with x,y and z set to 0.0.
|
Point(long level,
long version,
long pkgVersion)
Creates a new point with x,y and z set to 0.0.
|
Point(Point orig)
Copy constructor.
|
Point(XMLNode node)
|
Point(XMLNode node,
long l2version)
|
Modifier and Type | Method and Description |
---|---|
Point |
cloneObject()
Creates and returns a deep copy of this
Point . |
void |
delete()
Explicitly deletes the underlying native object.
|
java.lang.String |
getElementName()
Returns the XML element name of
this SBML object.
|
java.lang.String |
getId()
Returns the value of the 'id' attribute of this
Point . |
int |
getTypeCode()
Returns the libSBML type code of this object instance.
|
double |
getXOffset()
Returns the x offset.
|
double |
getYOffset()
Returns the y offset.
|
double |
getZOffset()
Returns the z offset.
|
boolean |
getZOffsetExplicitlySet()   |
void |
initDefaults()
Sets the Z offset to 0.0.
|
boolean |
isSetId()
|
void |
setElementName(java.lang.String name)
Sets the element name to be returned by getElementName().
|
int |
setId(java.lang.String sid)
Sets the value of the 'id' attribute of this
Point . |
void |
setOffsets(double x,
double y)
Sets the coordinates to the given values.
|
void |
setOffsets(double x,
double y,
double z)
Sets the coordinates to the given values.
|
void |
setX(double x)
Sets the x offset.
|
void |
setXOffset(double x)
Sets the x offset.
|
void |
setY(double y)
Sets the y offset.
|
void |
setYOffset(double y)
Sets the y offset.
|
void |
setZ(double z)
Sets the z offset.
|
void |
setZOffset(double z)
Sets the z offset.
|
XMLNode |
toXML(java.lang.String name)
Creates an
XMLNode object from this. |
int |
unsetId()
Unsets the value of the 'id' attribute of this
Point . |
double |
x()
Returns the x offset.
|
double |
y()
Returns the y offset.
|
double |
z()
Returns the z offset.
|
addCVTerm, addCVTerm, appendAnnotation, appendAnnotation, appendNotes, appendNotes, connectToChild, deleteDisabledPlugins, deleteDisabledPlugins, disablePackage, enablePackage, equals, getAncestorOfType, getAncestorOfType, getAnnotation, getAnnotationString, getColumn, getCVTerm, getCVTerms, getDisabledPlugin, getElementByMetaId, getElementBySId, getIdAttribute, getLevel, getLine, getListOfAllElements, getListOfAllElements, getListOfAllElementsFromPlugins, getListOfAllElementsFromPlugins, getMetaId, getModel, getModelHistory, getName, getNamespaces, getNotes, getNotesString, getNumCVTerms, getNumDisabledPlugins, getNumPlugins, getObjectVersion, getPackageName, getPackageVersion, getParentSBMLObject, getPlugin, getPlugin, getPrefix, getResourceBiologicalQualifier, getResourceModelQualifier, getSBMLDocument, getSBOTerm, getSBOTermAsURL, getSBOTermID, getURI, getVersion, hashCode, hasValidLevelVersionNamespaceCombination, isPackageEnabled, isPackageURIEnabled, isPkgEnabled, isPkgURIEnabled, isSetAnnotation, isSetIdAttribute, isSetMetaId, isSetModelHistory, isSetName, isSetNotes, isSetSBOTerm, isSetUserData, matchesRequiredSBMLNamespacesForAddition, matchesSBMLNamespaces, removeFromParentAndDelete, removeTopLevelAnnotationElement, removeTopLevelAnnotationElement, removeTopLevelAnnotationElement, renameMetaIdRefs, renameSIdRefs, renameUnitSIdRefs, replaceTopLevelAnnotationElement, replaceTopLevelAnnotationElement, setAnnotation, setAnnotation, setIdAttribute, setMetaId, setModelHistory, setName, setNamespaces, setNotes, setNotes, setNotes, setSBOTerm, setSBOTerm, toSBML, toXMLNode, unsetAnnotation, unsetCVTerms, unsetIdAttribute, unsetMetaId, unsetModelHistory, unsetName, unsetNotes, unsetSBOTerm, unsetUserData
public Point(long level, long version, long pkgVersion) throws SBMLConstructorException
level
- the SBML Level.version
- the Version within the SBML Level.pkgVersion
- the version of the package.
SBMLConstructorException
SBMLDocument
having a different
combination of SBML Level, Version and XML namespaces than the object
itself will result in an error at the time a caller attempts to make the
addition. A parent object must have compatible Level, Version and XML
namespaces. (Strictly speaking, a parent may also have more XML
namespaces than a child, but the reverse is not permitted.) The
restriction is necessary to ensure that an SBML model has a consistent
overall structure. This requires callers to manage their objects
carefully, but the benefit is increased flexibility in how models can be
created by permitting callers to create objects bottom-up if desired. In
situations where objects are not yet attached to parents (e.g.,
SBMLDocument
), knowledge of the intented SBML Level and Version help
libSBML determine such things as whether it is valid to assign a
particular value to an attribute. For packages, this means that the
parent object to which this package element is being added must have
been created with the package namespace, or that the package namespace
was added to it, even if that parent is not a package object itself.public Point(long level, long version) throws SBMLConstructorException
level
- the SBML Level.version
- the Version within the SBML Level.pkgVersion
- the version of the package.
SBMLConstructorException
SBMLDocument
having a different
combination of SBML Level, Version and XML namespaces than the object
itself will result in an error at the time a caller attempts to make the
addition. A parent object must have compatible Level, Version and XML
namespaces. (Strictly speaking, a parent may also have more XML
namespaces than a child, but the reverse is not permitted.) The
restriction is necessary to ensure that an SBML model has a consistent
overall structure. This requires callers to manage their objects
carefully, but the benefit is increased flexibility in how models can be
created by permitting callers to create objects bottom-up if desired. In
situations where objects are not yet attached to parents (e.g.,
SBMLDocument
), knowledge of the intented SBML Level and Version help
libSBML determine such things as whether it is valid to assign a
particular value to an attribute. For packages, this means that the
parent object to which this package element is being added must have
been created with the package namespace, or that the package namespace
was added to it, even if that parent is not a package object itself.public Point(long level) throws SBMLConstructorException
level
- the SBML Level.version
- the Version within the SBML Level.pkgVersion
- the version of the package.
SBMLConstructorException
SBMLDocument
having a different
combination of SBML Level, Version and XML namespaces than the object
itself will result in an error at the time a caller attempts to make the
addition. A parent object must have compatible Level, Version and XML
namespaces. (Strictly speaking, a parent may also have more XML
namespaces than a child, but the reverse is not permitted.) The
restriction is necessary to ensure that an SBML model has a consistent
overall structure. This requires callers to manage their objects
carefully, but the benefit is increased flexibility in how models can be
created by permitting callers to create objects bottom-up if desired. In
situations where objects are not yet attached to parents (e.g.,
SBMLDocument
), knowledge of the intented SBML Level and Version help
libSBML determine such things as whether it is valid to assign a
particular value to an attribute. For packages, this means that the
parent object to which this package element is being added must have
been created with the package namespace, or that the package namespace
was added to it, even if that parent is not a package object itself.public Point() throws SBMLConstructorException
level
- the SBML Level.version
- the Version within the SBML Level.pkgVersion
- the version of the package.
SBMLConstructorException
SBMLDocument
having a different
combination of SBML Level, Version and XML namespaces than the object
itself will result in an error at the time a caller attempts to make the
addition. A parent object must have compatible Level, Version and XML
namespaces. (Strictly speaking, a parent may also have more XML
namespaces than a child, but the reverse is not permitted.) The
restriction is necessary to ensure that an SBML model has a consistent
overall structure. This requires callers to manage their objects
carefully, but the benefit is increased flexibility in how models can be
created by permitting callers to create objects bottom-up if desired. In
situations where objects are not yet attached to parents (e.g.,
SBMLDocument
), knowledge of the intented SBML Level and Version help
libSBML determine such things as whether it is valid to assign a
particular value to an attribute. For packages, this means that the
parent object to which this package element is being added must have
been created with the package namespace, or that the package namespace
was added to it, even if that parent is not a package object itself.public Point(LayoutPkgNamespaces layoutns) throws SBMLConstructorException
The package namespaces object used in this constructor is derived from a
SBMLNamespaces
object, which encapsulates SBML Level/Version/namespaces
information. It is used to communicate the SBML Level, Version, and
package version and name information used in addition to SBML Level 3 Core. A
common approach to using libSBML's SBMLNamespaces
facilities is to create an
package namespace object somewhere in a program once, then hand that object
as needed to object constructors of that package that accept it as and
argument, such as this one.
layoutns
- the LayoutPkgNamespaces
object.
SBMLConstructorException
SBMLDocument
having a different
combination of SBML Level, Version and XML namespaces than the object
itself will result in an error at the time a caller attempts to make the
addition. A parent object must have compatible Level, Version and XML
namespaces. (Strictly speaking, a parent may also have more XML
namespaces than a child, but the reverse is not permitted.) The
restriction is necessary to ensure that an SBML model has a consistent
overall structure. This requires callers to manage their objects
carefully, but the benefit is increased flexibility in how models can be
created by permitting callers to create objects bottom-up if desired. In
situations where objects are not yet attached to parents (e.g.,
SBMLDocument
), knowledge of the intented SBML Level and Version help
libSBML determine such things as whether it is valid to assign a
particular value to an attribute. For packages, this means that the
parent object to which this package element is being added must have
been created with the package namespace, or that the package namespace
was added to it, even if that parent is not a package object itself.public Point(Point orig) throws SBMLConstructorException
orig
- the instance to copy.SBMLConstructorException
public Point(LayoutPkgNamespaces layoutns, double x, double y, double z) throws SBMLConstructorException
SBMLConstructorException
public Point(LayoutPkgNamespaces layoutns, double x, double y) throws SBMLConstructorException
SBMLConstructorException
public Point(XMLNode node, long l2version) throws SBMLConstructorException
SBMLConstructorException
public Point(XMLNode node) throws SBMLConstructorException
SBMLConstructorException
public void delete()
In general, application software will not need to call this method directly. The Java language binding for libSBML is implemented as a language wrapper that provides a Java interface to libSBML's underlying C++/C code. Some of the Java methods return objects that are linked to objects created not by Java code, but by C++ code. The Java objects wrapped around them will be deleted when the garbage collector invokes the corresponding C++ finalize()
methods for the objects. The finalize()
methods in turn call the Point.delete()
method on the libSBML object.
This method is exposed in case calling programs want to ensure that the underlying object is freed immediately, and not at some arbitrary time determined by the Java garbage collector. In normal usage, callers do not need to invoke Point.delete()
themselves.
public double x()
public double y()
public double z()
public double getXOffset()
public double getYOffset()
public double getZOffset()
public void setX(double x)
public void setY(double y)
public void setZ(double z)
public void setXOffset(double x)
public void setYOffset(double y)
public void setZOffset(double z)
public void setOffsets(double x, double y, double z)
public void setOffsets(double x, double y)
public boolean getZOffsetExplicitlySet()
public void initDefaults()
public java.lang.String getId()
Point
.
getId
 in class SBase
Point
.
SBase.getIdAttribute()
,
SBase.setIdAttribute(String sid)
,
SBase.isSetIdAttribute()
,
SBase.unsetIdAttribute()
The identifier given by an object's 'id' attribute value
is used to identify the object within the SBML model definition.
Other objects can refer to the component using this identifier. The
data type of 'id' is always SId
or a type derived
from that, such as UnitSId
, depending on the object in
question. All data types are defined as follows:
letter .= 'a'..'z','A'..'Z' digit .= '0'..'9' idChar .= letter | digit | '_' SId .= ( letter | '_' ) idChar*
The characters (
and )
are used for grouping, the
character *
'zero or more times', and the character
|
indicates logical 'or'. The equality of SBML identifiers is
determined by an exact character sequence match i.e., comparisons must be
performed in a case-sensitive manner. This applies to all uses of SId
,
SIdRef
, and derived types.
In SBML Level 3 Version 2, the 'id' and 'name' attributes were
moved to SBase
directly, instead of being defined individually for many
(but not all) objects. Libsbml has for a long time provided functions
defined on SBase
itself to get, set, check, and unset those attributes, which
would fail or otherwise return empty strings if executed on any object
for which those attributes were not defined. Now that all SBase
objects
define those attributes, those functions now succeed for any object with
the appropriate level and version.
The exception to this rule is that for InitialAssignment
, EventAssignment
,
AssignmentRule
, and RateRule
objects, the getId() function and the isSetId()
functions (though not the setId() or unsetId() functions) would instead
reference the value of the 'variable' attribute (for the rules and event
assignments) or the 'symbol' attribute (for initial assignments).
The AlgebraicRule
fell into this category as well, though because it
contained neither a 'variable' nor a 'symbol' attribute, getId() would
always return an empty string, and isSetId() would always return false.
For this reason, four new functions are now provided
(getIdAttribute(), setIdAttribute(String),
isSetIdAttribute(), and unsetIdAttribute()) that will always
act on the actual 'id' attribute, regardless of the object's type. The
new functions should be used instead of the old ones unless the old behavior
is somehow necessary.
Regardless of the level and version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.
public boolean isSetId()
isSetId
 in class SBase
true
if the 'id' attribute of this SBML object is
set, false
otherwise.
SBase.getIdAttribute()
,
SBase.setIdAttribute(String sid)
,
SBase.unsetIdAttribute()
,
SBase.isSetIdAttribute()
The identifier given by an object's 'id' attribute value
is used to identify the object within the SBML model definition.
Other objects can refer to the component using this identifier. The
data type of 'id' is always SId
or a type derived
from that, such as UnitSId
, depending on the object in
question. All data types are defined as follows:
letter .= 'a'..'z','A'..'Z' digit .= '0'..'9' idChar .= letter | digit | '_' SId .= ( letter | '_' ) idChar*
The characters (
and )
are used for grouping, the
character *
'zero or more times', and the character
|
indicates logical 'or'. The equality of SBML identifiers is
determined by an exact character sequence match i.e., comparisons must be
performed in a case-sensitive manner. This applies to all uses of SId
,
SIdRef
, and derived types.
In SBML Level 3 Version 2, the 'id' and 'name' attributes were
moved to SBase
directly, instead of being defined individually for many
(but not all) objects. Libsbml has for a long time provided functions
defined on SBase
itself to get, set, check, and unset those attributes, which
would fail or otherwise return empty strings if executed on any object
for which those attributes were not defined. Now that all SBase
objects
define those attributes, those functions now succeed for any object with
the appropriate level and version.
The exception to this rule is that for InitialAssignment
, EventAssignment
,
AssignmentRule
, and RateRule
objects, the getId() function and the isSetId()
functions (though not the setId() or unsetId() functions) would instead
reference the value of the 'variable' attribute (for the rules and event
assignments) or the 'symbol' attribute (for initial assignments).
The AlgebraicRule
fell into this category as well, though because it
contained neither a 'variable' nor a 'symbol' attribute, getId() would
always return an empty string, and isSetId() would always return false.
For this reason, four new functions are now provided
(getIdAttribute(), setIdAttribute(String),
isSetIdAttribute(), and unsetIdAttribute()) that will always
act on the actual 'id' attribute, regardless of the object's type. The
new functions should be used instead of the old ones unless the old behavior
is somehow necessary.
Regardless of the level and version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.
public int setId(java.lang.String sid)
Point
.
The string sid
is copied.
The identifier given by an object's 'id' attribute value
is used to identify the object within the SBML model definition.
Other objects can refer to the component using this identifier. The
data type of 'id' is always SId
or a type derived
from that, such as UnitSId
, depending on the object in
question. All data types are defined as follows:
letter .= 'a'..'z','A'..'Z' digit .= '0'..'9' idChar .= letter | digit | '_' SId .= ( letter | '_' ) idChar*
The characters (
and )
are used for grouping, the
character *
'zero or more times', and the character
|
indicates logical 'or'. The equality of SBML identifiers is
determined by an exact character sequence match i.e., comparisons must be
performed in a case-sensitive manner. This applies to all uses of SId
,
SIdRef
, and derived types.
In SBML Level 3 Version 2, the 'id' and 'name' attributes were
moved to SBase
directly, instead of being defined individually for many
(but not all) objects. Libsbml has for a long time provided functions
defined on SBase
itself to get, set, check, and unset those attributes, which
would fail or otherwise return empty strings if executed on any object
for which those attributes were not defined. Now that all SBase
objects
define those attributes, those functions now succeed for any object with
the appropriate level and version.
The exception to this rule is that for InitialAssignment
, EventAssignment
,
AssignmentRule
, and RateRule
objects, the getId() function and the isSetId()
functions (though not the setId() or unsetId() functions) would instead
reference the value of the 'variable' attribute (for the rules and event
assignments) or the 'symbol' attribute (for initial assignments).
The AlgebraicRule
fell into this category as well, though because it
contained neither a 'variable' nor a 'symbol' attribute, getId() would
always return an empty string, and isSetId() would always return false.
For this reason, four new functions are now provided
(getIdAttribute(), setIdAttribute(String),
isSetIdAttribute(), and unsetIdAttribute()) that will always
act on the actual 'id' attribute, regardless of the object's type. The
new functions should be used instead of the old ones unless the old behavior
is somehow necessary.
Regardless of the level and version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.
setId
 in class SBase
sid
- the string to use as the identifier of this object.
SBase.getIdAttribute()
,
SBase.setIdAttribute(String sid)
,
SBase.isSetIdAttribute()
,
SBase.unsetIdAttribute()
public int unsetId()
Point
.
The identifier given by an object's 'id' attribute value
is used to identify the object within the SBML model definition.
Other objects can refer to the component using this identifier. The
data type of 'id' is always SId
or a type derived
from that, such as UnitSId
, depending on the object in
question. All data types are defined as follows:
letter .= 'a'..'z','A'..'Z' digit .= '0'..'9' idChar .= letter | digit | '_' SId .= ( letter | '_' ) idChar*
The characters (
and )
are used for grouping, the
character *
'zero or more times', and the character
|
indicates logical 'or'. The equality of SBML identifiers is
determined by an exact character sequence match i.e., comparisons must be
performed in a case-sensitive manner. This applies to all uses of SId
,
SIdRef
, and derived types.
In SBML Level 3 Version 2, the 'id' and 'name' attributes were
moved to SBase
directly, instead of being defined individually for many
(but not all) objects. Libsbml has for a long time provided functions
defined on SBase
itself to get, set, check, and unset those attributes, which
would fail or otherwise return empty strings if executed on any object
for which those attributes were not defined. Now that all SBase
objects
define those attributes, those functions now succeed for any object with
the appropriate level and version.
The exception to this rule is that for InitialAssignment
, EventAssignment
,
AssignmentRule
, and RateRule
objects, the getId() function and the isSetId()
functions (though not the setId() or unsetId() functions) would instead
reference the value of the 'variable' attribute (for the rules and event
assignments) or the 'symbol' attribute (for initial assignments).
The AlgebraicRule
fell into this category as well, though because it
contained neither a 'variable' nor a 'symbol' attribute, getId() would
always return an empty string, and isSetId() would always return false.
For this reason, four new functions are now provided
(getIdAttribute(), setIdAttribute(String),
isSetIdAttribute(), and unsetIdAttribute()) that will always
act on the actual 'id' attribute, regardless of the object's type. The
new functions should be used instead of the old ones unless the old behavior
is somehow necessary.
Regardless of the level and version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.
unsetId
 in class SBase
SBase.getIdAttribute()
,
SBase.setIdAttribute(String sid)
,
SBase.isSetIdAttribute()
,
SBase.unsetIdAttribute()
public void setElementName(java.lang.String name)
public java.lang.String getElementName()
getElementName
 in class SBase
public Point cloneObject()
Point
.
cloneObject
 in class SBase
Point
.public int getTypeCode()
LibSBML attaches an identifying code to every kind of SBML object. These
are integer constants known as SBML type codes. The names of all
the codes begin with the characters SBML_
.
In the Java language interface for libSBML, the
type codes are defined as static integer constants in the interface class
libsbmlConstants
. Note that different Level 3
package plug-ins may use overlapping type codes to identify the package
to which a given object belongs, call the getPackageName()
method on the object.
getTypeCode
 in class SBase
SBML_LAYOUT_POINT
.
Point.getElementName()
,
SBase.getPackageName()