statistics-0.15.2.0: A library of statistical types, data, and functions
Copyright(c) 2009 Bryan O'Sullivan
LicenseBSD3
Maintainerbos@serpentine.com
Stabilityexperimental
Portabilityportable
Safe HaskellNone
LanguageHaskell98

Statistics.Distribution.Normal

Contents

Description

The normal distribution. This is a continuous probability distribution that describes data that cluster around a mean.

Synopsis

Documentation

data NormalDistribution Source #

The normal distribution.

Instances

Instances details
Eq NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

Data NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NormalDistribution -> c NormalDistribution

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NormalDistribution

toConstr :: NormalDistribution -> Constr

dataTypeOf :: NormalDistribution -> DataType

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NormalDistribution)

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NormalDistribution)

gmapT :: (forall b. Data b => b -> b) -> NormalDistribution -> NormalDistribution

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NormalDistribution -> r

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NormalDistribution -> r

gmapQ :: (forall d. Data d => d -> u) -> NormalDistribution -> [u]

gmapQi :: Int -> (forall d. Data d => d -> u) -> NormalDistribution -> u

gmapM :: Monad m => (forall d. Data d => d -> m d) -> NormalDistribution -> m NormalDistribution

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NormalDistribution -> m NormalDistribution

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NormalDistribution -> m NormalDistribution

Read NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

Show NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

showsPrec :: Int -> NormalDistribution -> ShowS

show :: NormalDistribution -> String

showList :: [NormalDistribution] -> ShowS

Generic NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

Associated Types

type Rep NormalDistribution :: Type -> Type

ToJSON NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

FromJSON NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

Binary NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

ContGen NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

genContVar :: PrimMonad m => NormalDistribution -> Gen (PrimState m) -> m Double Source #

Entropy NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

entropy :: NormalDistribution -> Double Source #

MaybeEntropy NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

maybeEntropy :: NormalDistribution -> Maybe Double Source #

Variance NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

MaybeVariance NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

maybeVariance :: NormalDistribution -> Maybe Double Source #

maybeStdDev :: NormalDistribution -> Maybe Double Source #

Mean NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

mean :: NormalDistribution -> Double Source #

MaybeMean NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

maybeMean :: NormalDistribution -> Maybe Double Source #

ContDistr NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

density :: NormalDistribution -> Double -> Double Source #

quantile :: NormalDistribution -> Double -> Double Source #

complQuantile :: NormalDistribution -> Double -> Double Source #

logDensity :: NormalDistribution -> Double -> Double Source #

Distribution NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

Methods

cumulative :: NormalDistribution -> Double -> Double Source #

complCumulative :: NormalDistribution -> Double -> Double Source #

FromSample NormalDistribution Double Source #

Variance is estimated using maximum likelihood method (biased estimation).

Returns Nothing if sample contains less than one element or variance is zero (all elements are equal)

Instance details

Defined in Statistics.Distribution.Normal

Methods

fromSample :: Vector v Double => v Double -> Maybe NormalDistribution Source #

type Rep NormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Normal

type Rep NormalDistribution = D1 ('MetaData "NormalDistribution" "Statistics.Distribution.Normal" "statistics-0.15.2.0-KxFiyua02pmKdBaZFeneXx" 'False) (C1 ('MetaCons "ND" 'PrefixI 'True) ((S1 ('MetaSel ('Just "mean") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Double) :*: S1 ('MetaSel ('Just "stdDev") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Double)) :*: (S1 ('MetaSel ('Just "ndPdfDenom") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Double) :*: S1 ('MetaSel ('Just "ndCdfDenom") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Double))))

Constructors

normalDistr Source #

Arguments

:: Double

Mean of distribution

-> Double

Standard deviation of distribution

-> NormalDistribution 

Create normal distribution from parameters.

IMPORTANT: prior to 0.10 release second parameter was variance not standard deviation.

normalDistrE Source #

Arguments

:: Double

Mean of distribution

-> Double

Standard deviation of distribution

-> Maybe NormalDistribution 

Create normal distribution from parameters.

IMPORTANT: prior to 0.10 release second parameter was variance not standard deviation.

standard :: NormalDistribution Source #

Standard normal distribution with mean equal to 0 and variance equal to 1