Table Of Contents

Previous topic

The kmo_sky_mask recipe

Next topic

The kmo_copy recipe

This Page

The kmo_reconstruct recipe

kmo_reconstruct

Synopsis

Performs the cube reconstruction using different interpolation methods.

Description

Data with or without noise is reconstructed into a cube using the calibration frames XCAL, YCAL and LCAL. XCAL and YCAL are generated using recipe kmo_flat, LCAL is generated using recipe kmo_wave_cal.

The input data can contain noise extensions and will be reconstructed into additional extensions.

If an OH spectrum is given in the SOF file the lambda axis will be corrected using the OH lines as reference.

Input files

DO              KMOS
category        Type     Explanation                    Required #Frames
--------        -----    -----------                    -------- -------
DARK    or      RAW/F2D  data with                          Y       1
FLAT_ON or      RAW/F2D  or without noise
ARC_ON  or      RAW/F2D
OBJECT  or      RAW
STD     or      RAW
SCIENCE         RAW
XCAL            F2D      x-direction calib. frame           Y       1
YCAL            F2D      y-direction calib. frame           Y       1
LCAL            F2D      Wavelength calib. frame            Y       1
WAVE_BAND       F2L      Table with start-/end-wavelengths  Y       1
OH_SPEC         F1S      Vector holding OH lines            N       1

Output files

DO                KMOS
category          Type     Explanation
--------              -----    -----------
CUBE_DARK   or    F3I      Reconstructed cube
CUBE_FLAT   or    RAW/F2D  with or without noise
CUBE_ARC    or
CUBE_OBJECT or
CUBE_STD    or
CUBE_SCIENCE

Constructor

cpl.Recipe("kmo_reconstruct")

Create an object for the recipe kmo_reconstruct.

import cpl
kmo_reconstruct = cpl.Recipe("kmo_reconstruct")

Parameters

kmo_reconstruct.param.imethod

Method to use for interpolation. [“NN” (nearest neighbour), “lwNN” (linear weighted nearest neighbor), “swNN” (square weighted nearest neighbor), “MS” (Modified Shepard’s method)”CS” (Cubic spline)] (str; default: ‘CS’) [default=”CS”].

kmo_reconstruct.param.neighborhoodRange

Defines the range to search for neighbors. in pixels (float; default: 1.001) [default=1.001].

kmo_reconstruct.param.flux

TRUE: Apply flux conservation. FALSE: otherwise (bool; default: False) [default=False].

kmo_reconstruct.param.detimg

TRUE: if resampled detector frame should be created, FALSE: otherwise (bool; default: False) [default=False].

kmo_reconstruct.param.file_extension

TRUE: if OBS_ID keyword should be appended to output frames, FALSE: otherwise (bool; default: False) [default=False].

kmo_reconstruct.param.pix_scale

Change the pixel scale [arcsec]. Default of 0.2” results into cubes of 14x14pix, a scale of 0.1” results into cubes of 28x28pix, etc. (float; default: 0.2) [default=0.2].

kmo_reconstruct.param.xcal_interpolation

TRUE: Interpolate xcal between rotator angles. FALSE: otherwise (bool; default: True) [default=True].

kmo_reconstruct.param.b_samples

The number of samples in wavelength for the reconstructed cube (long; default: 2048) [default=2048].

kmo_reconstruct.param.b_start

The lowest wavelength [um] to use when reconstructing. Derived by default, depending on the band (float; default: -1.0) [default=-1.0].

kmo_reconstruct.param.b_end

The highest wavelength [um] to use when reconstructing. Derived by default, depending on the band (float; default: -1.0) [default=-1.0].

The following code snippet shows the default settings for the available parameters.

import cpl
kmo_reconstruct = cpl.Recipe("kmo_reconstruct")

kmo_reconstruct.param.imethod = "CS"
kmo_reconstruct.param.neighborhoodRange = 1.001
kmo_reconstruct.param.flux = False
kmo_reconstruct.param.detimg = False
kmo_reconstruct.param.file_extension = False
kmo_reconstruct.param.pix_scale = 0.2
kmo_reconstruct.param.xcal_interpolation = True
kmo_reconstruct.param.b_samples = 2048
kmo_reconstruct.param.b_start = -1.0
kmo_reconstruct.param.b_end = -1.0

You may also set or overwrite some or all parameters by the recipe parameter param, as shown in the following example:

import cpl
kmo_reconstruct = cpl.Recipe("kmo_reconstruct")
[...]
res = kmo_reconstruct( ..., param = {"imethod":"CS", "neighborhoodRange":1.001})

See also

cpl.Recipe for more information about the recipe object.

Bug reports

Please report any problems to Alex Agudo Berbel. Alternatively, you may send a report to the ESO User Support Department.