LU

Hans Hagen

For them

I owe much inspiration to both my parents. My mother Jannie constantly demonstrates me
that computer graphics will never improve nature. She also converted one of my first
METAPOST graphics into a patchwork that will remind me forever that handcraft is more vivid
than computer artwork. My father Hein has spent a great deal of his life teaching math, and
I'm sure he would have loved mMeTAPOST. I inherited his love for books. I therefore dedicate
this document to them.

Colofon

This manual is typeset with CONTEXT and mMeTAPOST. No special tricks are used and everything
you see in here, is available for CONTEXT users. The text is typeset in Palatino

and Courier. We used PDFTEX as TgX processing engine. Since this document is meant to

be printed in color, some examples will look sub-optimal when printed in black and white.

Graphics

The artist impression of one of Hasselts canals at page 195 is made by Johan Jonker.
The CDROM production process graphic at page 192 is a scan of a graphic
made by Hester de Weert.

Copyright

Hans Hagen, PRAGMA Advanced Document Engineering, Hasselt NL
copyright: 1999-2002 / version: January 9, 2002

Info

internet: www.pragma-ade.com
support: ntg-context@ntg.nl
email: pragma@wxs.nl

Introduction

This document is about METAPOST and TgX. The former is a graphic programming language, the
latter a typographic programming language. However, in this document we will not focus on real
programming, but more on how we can interface between those two languages. We will do so by
using CONTEXT, a macro package written in TgX, in which support for METAPOST is integrated in the
core. The TgX macros are integrated in CONTgXT, and the METAPOST macros are bundled in MetaFun.

When Donald Knuth wrote his typographical programming language TgX he was in need for
fonts, especially mathematical fonts. So, as a side track, he started writing METAFONT, a graphical
language. When you read between the lines in the METAFONT book and the source code, the name
John Hobby is mentioned alongside complicated formulas. It will be no surprise then, that, since
he was tightly involved in the development of METAFONT, after a few years his METAPOST showed
up.

While its ancestor METAFONT was originally targeted at designing fonts, METAPOST is more
oriented to drawing graphics as used in scientific publications. Since METAFONT produced bitmap
output, some of its operators make use of this fact. METAPOST on the other hand produces POST-
SCRIPT code, which means that it has some features not present in METAFONT and vise versa.

With MetaFun I will demonstrate that METAPOST can also be used, or misused, for less technical
drawing purposes. We will see that MeTAPOST can fill in some gaps in TgX, especially its lack of
graphic capabilities. We will demonstrate that graphics can make a document more attractive,
even if it is processed in a batch processing system like TzX. Most of all, we will see that embedding
METAPOST definitions in the TgX source enables a smooth communication between both programs.

The best starting point for using METAPOST is the manual written by its author John Hobby.
You can find this manual at every main TgX repository. Also, a copy of the METRFONT book from
Donald Knuth is worth every penny;, if only because it will give you the feeling that many years of
graphical fun lays ahead.

In this MetaFun manual we will demonstrate how you can embed graphics in a TgX document,
but we will also introduce most of the features of MeTAPOST. For this reason you will see a lot of
METAPOST code. For sure there are better methods to solve problems, but I have tried to demonstrate
different methods and techniques as much as possible.

I started using MeTAPOST long after I started using TgX, and I never regret it. Although I like Tpx
very much, I must admit that sometimes using METAPOST is even more fun. Therefore, before we
start exploring both in depth, I want to thank their creators, Donald Knuth and John Hobby, for
providing me these fabulous tools. Of course I also need to thank Han Thé Thanh, for giving the Tgx
community PDFTX, as well as providing me the hooks I considered neccessary for implementing
some of the features presented here.

I also want to thank David Arnold and Ton Otten for their fast proofreading, for providing
me useful input, and for testing the examples. Without Davids patience and help, this document
would be far from perfect English and less complete. Without Tons help, many small typo’s would
have gone unnoticed.

Hans Hagen, January 9, 2002

Content

Conventions 5
1 Welcome to METAPOST 7
1.1 Pathsl 7
1.2 Transformations 10
1.3 Constructing paths 14
14 Angles 23
1.5 Drawing pictures 24
1.6 Variables 28
1.7 Conditions 29
1.8 Loops 29
1.9 Macros 31
110 Arguments 33
111 Pens 35
1.12 Joininglines 37
113 Colors ...l 38
114 Dashes 39
115 Text ...l 39
1.16 Linear equations 41
117 Clipping 48
1.18 Some extensions 49
1.19 Cutting and pasting 55
2 Afewmoredetails 61
21 Making graphics 61
22 Boundingboxes 62
23 Unitsol 66
24 Scaling and shifting 68
2.5 Curve construction 71
2.6 Inflection, tension and curl 77
2.7 Transformations 85
28 Onlythisfar 88
29 Directions 94
210 Analyzing pictures 96
211 Pitfalls 103
212 TgXversus METAPOST 106
2.13 Internals and Interims 107
3 Embedded graphics 109
31 Getting started 109
3.2 External graphics 110

3.3
34
3.5
3.6
3.7
3.8

41
4.2
4.3
4.4
4.5
4.6

5.1
52
53
54

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
74
7.5

8.1
8.2
8.3

Integrated graphics
Graphic buffers
Communicating color
Common definitions
One page graphics

Managing resources

Enhancing the layout

Overlays
Overlay variables
Stacking overlays
Foregrounds
Typesetting graphics
Graphics and macros

Positional graphics
The concept
Anchors and layers

More layers
Complex text in graphics

Page backgrounds
The basic layout
Setting up backgrounds
Multiple overlays
Crossing borders
Bleeding

Shapes, symbols and buttons

Interfacing to TgX
Random graphics
Graphic variables
Shape libraries
Symbol collections

Special effects

Shading
Transparency

Clipping

111
114
116
119
119
120

123

123
125
125
126
127
129

139

139
140
143
148

151

151
155
158
159
165

169

169
170
173
174
176

179

179

183
187

8.4 Including graphics 191
85 Changingcolors 194
8.6 Outlinefonts 198
9 Functions 203
9.1 Overview 203
9.2 Gridso 205
9.3 Drawing functions 206
10 Typesetting in METAPOST 213
10.1 Theprocess 213
10.2 Environments 213
103 Labels 214
104 TpXtext ..o, 214
10.5 Talkingto TEX 226
10.6 Visualizing TEX 240
11 Debugging 243
12 Defining styles 249
121 Adaptivebuttons 249
13 A few applications 257
13.1 Simple drawings 257
13.2 Freelabels 260
13.3 Markingangles 265
13.4 Colorcircles 271
13.5 Foolyourself 277
13.6 Growing graphics 281
13.7 SimpleLogos 289
13.8 Musicsheets 293
139 Theeurosymbol 295
13.10 Killingtime 299
14 MetaFunmacros 303

15 Example graphics 305
A Programs 307
Al METAPOST i 307
A2 TEX 307
A3 ConTpXt 307
A4 TgXExeco.... 308
A5 MPtoPDF 308
A6 Testcase 310
B METAPOSTsyntax 311
B.1 Syntax diagrams 311
B2 Leftovers 320
C Thisdocument 323
D Reference 325
D1 Paths 325
D.2 Transformations 334
D3 Points 344
D4 Attributes 346
D5 Textc ... 352
D.6 Graphics 353
E Literature 355
E.1 METAFONT and METAPOST 355
E2 TgX i 355
E3 CONTRXTo.... 355
E4 Tools 355
E5 Distributions 355
Index 357

Conventions

When reading this manual, you may be tempted to test the examples shown. This can be done in
several ways. You can make a file and process that file by MeTAPOST. Such a file looks like:

input mp-tool ; % some initializations and auxiliary macros
input mp-spec ; 7% macros that support special features

beginfig(1) ;
£ill fullcircle scaled 5cm withcolor red ; % a graphic
endfig ;

end .

Don't forget the semi-colons that end the statements. If the file is saved as yourfile.mp, then
the file is processed by:

mpost yourfile

The results are available in yourfile.1 and can be viewed with GHOSTSCRIPT. You don’t need to
close the file so reprocessing is very convenient.
Alternatively you can use CONTEXT. In that case, a simple file looks like:

\starttext
\startuseMPgraphic{dummy}
f£ill fullcircle scaled 5cm withcolor red ;
\stopuseMPgraphic
\useMPgraphic{dummy}
\stoptext

If the file is saved as yourfile. tex, then you can produce a DVI file with:
texexec yourfile

A PDF file, viewable in ACROBAT or GHOSTVIEW, is produced with:
texexec --pdf yourfile

Depending on how your system is set up, CONTEXT will run mMeTAPOST during the TgX run or
afterwards. If you want to process a METAPOST file separately using TeXEXEC, you should say:

texexec --mptex yourfile.mp

This is the preferred way when a graphic contains TgX directives (btex cum suis) or when the
METAPOST file is generated by CONTEXT.

We will use lots of color. Don’'t worry if your red is not our red, or your yellow does not match
ours. We've made color definitions to match the overall design of this document, but you should
feel free to use any color of choice in the upcoming examples.

By default, CONTEXT has turned its color mechanism off. If you want your graphics to have
color, you should say:

\setupcolors[state=start]

Welcome to METAPOST

1.1

In this chapter, we will introduce the most important METAPOST concepts as well as demonstrate
some drawing primitives and operators. This chapter does not replace the METAFONT book or
METAPOST manual, both of which provide a lot of explanations, examples, and (dirty) tricks.

As its title says, the METARFONT book by Donald. E. Knuth is about fonts. Nevertheless, buying a
copy is worth the money, because as a METAPOST user you can benefit from the excellent chapters
about curves, algebraic expressions, and (linear) equations. The following sections are incomplete
in many aspects. More details on how to define your own macros can be found in both the META-
FONT book and METRPOST manual, but you will probably only appreciate the nasty details if you
have written a few simple figures yourself. This chapter will give you a start.

A whole section is dedicated to the basic extensions to METRPOST as provided by MetaFun. Most
of them are meant to make defining graphics like those shown in this document more convenient.

Many of the concepts introduced here will be discussed in more detail in later chapters. So,
you may consider this chapter to be an appetizer for the following chapters. If you want to get
started quickly, you can safely skip this chapter now.

) Paths

-

Paths are the building blocks of METRPOST graphics. In its simplest form, a path is a single point.

.(lcm,l 5cm)

Such a point is identified by two numbers, which represent the horizontal and vertical position,
often referred to as x and y, or (x, y). Because there are two numbers involved, in METAPOST this
point is called a pair. Its related datatype is therefore pair. The following statements assigns the
point we showed previously to a pair variable.

pair somepoint ; somepoint := (icm,1.5cm) ;

A pair can be used to identify a point in the two dimensional coordinate space, but it can also be
used to denote a vector (being a direction or displacement). For instance, (0,1) means ‘go up’.
Looking through math glasses, you may consider them vectors, and if you know how to deal with
them, METAPOST may be your friend, since it knows how to manipulate them.

You can connect points and the result is called a path. A path is a straight or bent line, and is
not necessarily a smooth curve. An example of a simple rectangular path is:'

In the next examples we use the debugging features discussed in chapter 11 to visualize the points, paths and bounding
boxes.

Paths elcome

METE

AP

A path can be open or closed
looks like this:

. The previous path is an example of a closed path. An open path

Paths

(1cm,1cm)..(1.5cm,1.5cm) .. (2cm,Ocm)

The ‘double period” connector .. tells METRPOST that we want to connect the lines by a smooth
curve. If you want to connect points with straight line segments, you should use —-.
Closing the path is done by connecting the first and last point, using the cycle command.

(1cm,1cm)..(1.5¢cm,1.5cm) .. (2cm,Ocm) . .cycle
Feel free to use . . or —— at any point in your path.
(lcm,1cm)--(1.5cm,1.5cm) .. (2cm,Ocm) . .cycle

This path, when drawn, looks like this:
+ °

As you can see in some of the previous examples, METRPOST is capable of drawing a smooth curve
through the three points that make up the path. We will now examine how this is done.

The six small points are the so called control points. These points pull their parent point in a
certain direction. The further away such a point is, the stronger the pull.

Each point has at most two control points. As you can see in the following graphic, the
endpoints of a non closed curve have only one control point.

This time we used the path:

(1.5cm,1.5cm)..(2cm,0cm) .. (1cm,1cm)

When you connect points by a smooth curve, MeTAPOST will calculate the control points itself,

unless you specify one or more of them.

Paths

Or

METAP

1.2

This path is specified as:
(1cm,1cm)..(1.5cm,1.5cm)..controls (3cm,2cm)..(2cm,Ocm)

In this path, the second and third point share a control point. Watch how the curve is pulled in
that direction. It is possible to pull a bit less by choosing a different control point:

(1cm,1cm)..(1.5cm,1.5cm)..controls (2.75cm,1.25cm)..(2cm,0Ocm)

Now we get:

This path is defined as:

(1cm,1cm) . .controls (.5cm,2cm) and (2.5cm,2cm)..(2cm, .5cm)

Transformations

We can store a path in a path variable. Before we can use such a variable, we have to allocate its
memory slot with path.

path p ; p := (lcm,lcm)..(1.5cm,2cm)..(2cm,0Ocm) ;

Although we can manipulate any path in the same way, using a variable saves us the effort to key
in a path more than once.

TAPOST Transformations

In this graphic, the path stored in p is drawn twice, once in its displaced form. The displacement

is defined as:

p shifted (4cm,2cm)

In a similar fashion you can rotate a path. You can even combine shifts and rotations. First we

rotate the path 15 degrees counter—clockwise around the origin.

p rotated 15

This rotation becomes more visible when we also shift the path to the right by saying:
rotated 15 shifted (4cm,Ocm)

Now we get:

1 | L 1
T] T T] T

Note that rotated 15 isequivalenttop rotatedaround (origin, 15).

Transformations elc

&

It may make more sense to rotate the shape around its center. This can easily be achieved with
the rotatedaround command. Again, we move the path to the right afterwards.

p rotatedaround(center p, 15) shifted (4cm,Ocm)

wM’:‘;:;\-/:%e:;:;

Yet another transformation is slanting. Just like characters can be upright or slanted, a graphic
can be:

p slanted 1.5 shifted (4cm,Ocm)

5
\

The slant operation’s main application is in tilting fonts. The x-coodinates are increased by a
percentage of their y-coordinate, so here every x becomes x + 1.5y. The y-coordinate is left
untouched. The following table summarizes the most important primitive transformations that
METAPOST supports.

METAPOST code mathematical equivalent

(x,y) shifted (a,b) (x+a,y+b)

(x,y) scaled s (sx,sy)

(x,y) xscaled s (sx,y)

(x,y) yscaled s (x,5Y)

(x,y) zscaled (u,v) (xu—yv,xv+ yu)

(x,y) slanted s (x+sy,y)

(x,y) rotated r (x cos(r) — ysin(r), x sin(r) + y cos(r))

The previously mentioned rotatedaround is not a primitive but a macro, defined in terms of
shifts and rotations. Another transformation macro is mirroring, or in METARPOST terminology,
reflectedabout.

elcome t0 METAPBST Transformations

The reflection axis is specified by a pair of points. For example, in the graphic above, we used the
following command to reflect the square about a line through the given points.

p reflectedabout((2.4cm,-.5),(2.4cm,3cm))
The line about which the path is mirrored. Mirroring does not have to be parallel to an axis.
p reflectedabout((2.4cm,-.5),(2.6cm,3cm))

The rectangle now becomes:

- . |

A zscaled specification takes a vector as argument:
p zscaled (2,.5)

The result looks like a combination of scaling and rotation, and conforms to the formula in the
previous table.

Transformations can be defined in terms of a transform matrix. Such a matrix is stored in a
transform variable. For example:

transform t ; t := identity scaled 2cm shifted (4cm,lcm) ;

We use the associated keyword transformed to apply this matrix to a path or picture.

Transformations elcor

P

1.3

p transformed t

In this example we’ve taken the identity matrix as starting point but you can use any predefined
transformation. The identity matrix is defined in such a way that it scales by a factor of one in
both directions and shifts over the zero-vector.

Transform variables can save quite some typing and may help you to force consistency when
many similar transformations are to be done. Instead of changing the scaling, shifting and other
transformations you can then stick to just changing the one transform variable.

Constructing paths

In most cases, a path will have more points than the few shown here. Take for instance a so called
super ellipse.

|
5 7

6
These graphics provide a lot of information. In this picture the crosshair in the center is the origin
and the dashed rectangle is the bounding box of the super ellipse. The bounding box specifies the
position of the graphic in relation to the origin as well as its width and height.

In the graphic on the right, you can see the points that make up the closed path as well as the
control points. Each point has a number with the first point numbered zero. Because the path is
closed, the first and last point coincide.

We've used the commands .. and -- as path connecting directives. In the next series of
examples, we will demonstrate a few more. However, before doing that, we define a few points,
using the predefined z variables.

z0
z2

(0.5cm,1.5cm) ; z1
(6.5cm,0.5cm) ; z3

(2.5cm,2.5cm) ;
(2.5cm,1.5cm) ;

Here z1 is a short way of saying (x1,x2). When a z variable is called, the corresponding x and
y variables are available too. Later we will discuss METAPOST capability to deal with expressions,
which are expressed using an = instead of :=. In this case the expression related to z0 is expanded
into:

z0 = (x0,y0) = (0.5cm,1.5cm) ;

But let’s for this moment forget about their expressive nature and simply see them as points which
we will now connect by straight line segments.

METAROST Constructing paths

T ro------o g ----------------- z0--z1--z2--z3--cycle
+ ! /1;\

=+ I—-———W ———————— zO..zl..zQ..z3..cycle

If we replace the . . by ..., we get a tighter path.

z0...z1...2z2...z3...cycle

Since there are . ., ——, and . . ., it will be no surprise that there is also ——-.

T ro------= B iy : z0---z1---z2---z3--—cycle
4 3 !
| 4 |
o ? ° :
|
1! !

If you compare this graphic with the one using -- the result is the same, but there is a clear
difference in control points. As a result, combining .. with —— or ——— makes a big difference.
Here we get a non-smooth connection between the curves and the straight line.

\
Constructing paths n/ve C

z0..z1..22--z3. .cycle

As

you can see in the next graphic, when we use ---, we get a smooth connection between the

straight line and the rest of the curve.

z0..z1..z2---z3. .cycle

So far, we have joined the four points as one path. Alternatively, we can constrict subpaths and
connect them using the ampersand symbol, &.

z0..z1..2z2 & z2..23..z0 & cycle

| O

So far we have created a closed path. Closing is done by cycle. The following path may look
closed but is in fact open.

z0..z1..22..z3..20

Only a closed path can be filled. The closed alternative looks as follows. We will see many
examples of filled closed paths later on.

@ Constructing paths

z0..z1..z2..23..2z0..cycle

Here the final . . will try to make a smooth connection, but because we already are at the starting
point, this is not possible. However, the cycle command can automatically connects to the first
point. Watch the difference between the previous and the next path.

z0..z1..z2..z3. .cycle

It is also possible to combine two paths into one that don’t have common head and tails. First we
define an open path:

+ r----- ;;::"“1::::: ““““““ z0..zl1..2z2

z0..z3..zl. .cycle

Constructing paths 5

With buildcycle we can combine two paths into one.

buildcycle(z0..z1..z2 , z0..z3..z1..cycle)

We would refer readers to the METAFONT book and the METAPOST manual for an explanation of the
intricacies of the buildcycle command. It is an extremely complicated command, and there is
just not enough room here to do it justice. We suffice with saying that the paths should cross at
least once before the buildcycle command can craft a combined path from two given paths. We
encourage readers to experiment with this command.

In order to demonstrate another technique of joining paths, we first draw a few strange paths.
The last of these three graphics demonstrates the use of softjoin.

z0--z1..22--z3

z0..z1..22--z3

Watch how softjoin removes a point in the process of smoothing a connection. The smoothness
is accomplished by adapting the control points of the neighbouring points in the appropriate way.

z0--z1 softjoin z2--z3

APOST Constructing paths

Once a path is known, you can cut off a slice of it. We will demonstrate a few alternative ways of
doing so, but first we show one more time the path that we take as starting point.

z0..z1..22..23..cycle

This path is made up out of five points, where the cycle duplicates the first point and connects the
loose ends. The first point has number zero.

We can use these points in the subpath command, which takes two arguments, specifying the
range of points to cut of the path specified after the keyword of.

+ subpath(2,4) of (z0..zl..z2..z3..cycle)

The new (sub)path is a new path with its own points that start numbering at zero. The next
graphic shows both the original and the subpath from point 1 upto 3.

(z0..z1..22..23..cycle)
subpath(1,3)

In spite of what you may think, a point is not fixed. This is why in METAPOST a point along a path is
officially called a time. The next example demonstrates that we can specify any time on the path.

Constructing paths WE@E qpo%

EEEEN- N
 METAPOST |
| I |

(z0..z1..22..23..cycle)
subpath(2.45,3.85)

Often we want to take a slice starting at a specific point. This is provided by cutafter and its
companion cutbefore. Watch out, this time we use a non—cyclic path.

(z0..z1..22..23)

(z0..z1..22..23) cutafter z2

Constructing paths

(z0..z1..z22..23) cutbefore z1

Here is a somewhat silly way of accomplishing the same thing, but it is a nice introduction to
METAPOST’s point operation. In order to use this command effectively, you need to know how
many points make up the path.

T (z0..2z1..22..23) cutbefore point 2 of (z0..zl..z2..z23)

As with subpath, you can use fractions to specify the time on the path, although the resulting
point is not necessarily positioned linearly along the curve.

T (z0..z1..22..23) cutbefore point 2.5 of (z0..zl..z2..23)

If you really want to know the details of where fraction points are positioned, you should read
the MeTAFONT book and study the source of MeTAFONT and MeTAPOST, where you will find the
complicated formulas that are used to calculate smooth curves.

o]

Constructing paths cHn e

z0..z1..cycle

Like any closed path, this path has points where the tangent is horizontal or vertical. Early in this
chapter we mentioned that a pair (or point) can specify a direction or vector. Although any angle
is possible, we often use one of four predefined directions:

right (1, 0)
up (o0, 1
left (-1, 0)
down (0,-1)

We can use these predefined directions in combination with directionpoint and cutafter.
The following command locates the first point on the path that has a tangent that points vertically
upward, and then feeds this point to the cutafter command.

T (z0..z1..cycle) cutafter directionpoint up of (z0..zl..cycle)
—_ 1

You are not limited to predefined direction vectors. You can provide a pair denoting a direction.
In the next example we use the following cyclic path:

z0..zl..cycle

M mpo—1H Constructing paths

1.4

(z0..z1..cycle) cutafter directionpoint (1,1) of (z0O..zl..cycle)

We will apply these commands in the next chapters, but first we will finish our introduction in
METAPOST. We have seen how a path is constructed and what can be done with it. Now it is time
to demonstrate how such a path is turned into a graphic.

Angles

You can go from angles to vectors and vice versa using the angle and dir functions. The next
example show both in action.

pickup pencircle scaled 2mm ;

draw (origin
scaled 3cm
draw (origin
scaled 3cm
draw (origin
scaled 3cm

-- dir(45) -- dir(0) -- cycle)
withcolor .625red ;
-- dir(angle(1,1)) -- dir(angle(1,0)) -- cycle)
shifted (3.5cm,0) withcolor .625yellow ;
-- (1,1) -- (1,0) -- cycle)
shifted (7cm,0) withcolor .625white ;

The dir command returns an unit vector, which is why the first two shapes look different and are
smaller than the third one. We can compensate for that by an additional scaling:

pickup pencircle scaled 2mm ;

draw (origin

scaled sqrt(2) scaled 3cm

draw (origin

-- dir(45) -- dir(0) -- cycle)
withcolor .625red ;
-- dir(angle(1,1)) -- dir(angle(1,0)) -- cycle)

scaled sqrt(2) scaled 3cm shifted (4.5cm,0) withcolor .625yellow ;

draw (origin
scaled

Angles

-- (1,1) -- (1,0) -- cycle)

3cm shifted (9cm,0) withcolor .625white ;

METAP

1.5

Drawing pictures

Once a path is defined, either directly or as a variable, you can turn it into a picture. You can draw
a path, like we did in the previous examples, or you can fill it, but only if it is closed.

Drawing is done by applying the draw command to a path, as in:
draw (Ocm,1lcm)..(2cm,2cm) .. (4cm,Ocm)..cycle ;
The rightmost graphic was made with £i11:
£i1l (Ocm,lcm)..(2cm,2cm) .. (4cm,0cm)..cycle ;

If you try to duplicate this drawing, you will notice that you will get black lines instead of red and
a black fill instead of a gray one. When drawing or filling a path, you can give it a color, use all
kinds of pens, and achieve special effects like dashes or arrows.

These two graphics were defined and drawn using the following commands. Later we will explain
how you can set the line width (or penshape in terms of METAPOST).

Drawing pictures

path p ; p := (Ocm,1lcm)..(2cm,2cm).. (4cm,Ocm) .. (2cm,lcm)..cycle ;
drawarrow p withcolor .62bred ;
draw p shifted (7cm,0) dashed withdots withcolor .625yellow ;

Once we have drawn one or more paths, we can store them in a picture variable. The straightfor-
ward way to store a picture is to copy it from the current picture:

picture pic ; pic := currentpicture ;

The following command effectively clears the picture memory and allows us to start anew.
currentpicture := nullpicture ;

We can shift, rotate and slant the picture stored in pic as we did with paths. We can say:
draw pic rotated 45 withcolor red ;

A picture can hold multiple paths. You may compare a picture to grouping as provided by drawing
applications.

draw (Ocm,0Ocm)--(1cm,1cm) ; draw (lcm,Ocm)--(Ocm,lcm) ;
picture pic ; pic := currentpicture ;

draw pic shifted (3cm,Ocm) ; draw pic shifted (6cm,Ocm) ;
pic := currentpicture ; draw pic shifted (Ocm,2cm) ;

We first draw two paths and store the resulting ‘cross’ in a picture variable. Then we draw this
picture two times, so that we now have three copies of the cross. We store the accumulated
drawing again, so that after duplication, we finally get six crosses.

N N NS
7N 7N 7SN

N N NS
7N 7N 7SN

You can often follow several routes to reach the same solution. Consider for instance the following
graphic.

£il1l (0,0)--(ww,0)--(ww,hh)--(w,hh)--(w,h)--(0,h)--cycle ;
£i1l (ww,0)--(w,0)--(w,hh)--cycle ;

The points that are used to construct the paths are defined using the constants w, h, ww and hh.
These are defined as follows:

METAP

Drawing pictures elc 11?1 e

w :=4cm ; h := 2cm ; ww := 1cm ; hh := 1.5cm ;

In this case we draw two shapes that leave part of the rectangle uncovered. If you have a
background, this technique allows the background to ‘show through’ the graphic.

A not uncommon practice when making complicated graphics is to use unfill operations. Since
METAPOST provides one, let us see what happens if we apply this command.

£i1l (0,0)--(w,0)--(w,h)--(0,h)--cycle ;
unfill (ww,0)--(w,hh)--(ww,hh)--cycle ;

This does not always give the desired effect, because METAPOST’s unfill is not really an unfill, but
a £i111 with color background. Since this color is white by default, we get what we just showed.
So, if we set background to black, using background := black, we get:

Of course, you can set the variable background to a different color, but this does not hide the fact
that MeTAPOST lacks a real unfill operation.

Since we don't consider this unfill a suitable operator, you may wonder how we achieved the
above result.

£ill (0,0)--(0,h)-—-(w,h)--(w,0)--(ww,0)--(w,hh)—-(ww,hh)—-
(ww,0)--cycle ;

Drawing pictures

This feature depends on the POSTSCRIPT way of filling closed paths, which comes down to filling
either the left or the right hand side of a curve. The following alternative works too.

fill (0,0)--(0,h)--(w,h)--(w,hh)--(ww,hh)--(ww,0)--(w,hh)—-
(w,0)--cycle ;

The next alternative will fail. This has to do with the change in direction at point (0,0) halfway
through the path. Sometimes changing direction can give curious but desirable effects, but here
it brings no good.

fill (0’0)__(0’11) - (W’h) - (W’O)__(O,O)__ (WW’O)__ (WW,hh)__
(w,hh)--(ww,0)--cycle ;

This path fails because of the way POSTSCRIPT implements its fill operator. More details on how
POSTSCRIPT defines fills can be found in the reference manuals.

Some of the operations we have seen are hard coded into METAPOST and are called primitives.
Others are defined as macros, that is, a sequence of METARPOST commands. Since they are used
often, you may expect draw and £i11 to be primitives, but they are not. They are macros defined
in terms of primitives.

Given a path pat, you can consider a draw to be defined in terms of:

addto currentpicture doublepath pat
The £i11 command on the other hand is defined as:
addto currentpicture contour pat

Both macros are actually a bit more complicated but this is mainly due to the fact that they also
have to deal with attributes like the pen and color they draw with.

You can use doublepath and contour directly, but we will use draw and £ill whenever
possible.

Drawing pictures

Given a picture pic, the following code is valid:
addto currentpicture also pic

You can add pictures to existing picture variables, where currentpicture is the picture that is
flushed to the output file. Watch the subtle difference between adding a doublepath, contour
or picture.

1.6 Variables
At this point you may have noted that METRPOST is a programming language. Contrary to some
of today’s languages, METAPOST is a simple and clean language. Actually, it is a macro language.
Although MeTAPOST and TgX are a couple, the languages differ in many aspects. If you are using
both, you will sometimes wish that features present in one would be available in the other. When
using both languages, in the end you will understand why the conceptual differences make sense.
Being written in PASCAL, it will be no surprise that METAPOST has some PASCAL-like features,
although some may also recognize features from ALGOL6S in it.
First there is the concept of variables and assignments. There are several data types, some of
which we already have seen.
numeric real number in the range —4096. .. + 4096
boolean a variable that takes one of two states: true or false
pair point or vector in 2-dimensional space
path a piecewise collection of curves and line segments
picture collection of stroked or filled paths
string sequence of characters, like "metapost"
There are too additional types, transform and pen, but we will not discuss these in depth.
transform transformation vector with six elements
pen pen specification
You can achieve interesting effects by using pens with certain shapes. For the moment you may
consider a pen to be a path itself that is applied to the path that is drawn.
The numeric data type is used so often that it is the default type of any non declared variable.
This means that
n := 10 ;
is the same as
numeric n ; n := 10 ;
When writing collections of macros, it makes sense to use the second method, because you can
never be sure if n isn’t already declared as a picture variable, and assigning a numeric to a picture
variable is not permitted.
Because we often deal with collections of objects, such as a series of points, all variables can be
organized in arrays. For instance:
elcometo METAPOST Variables

1.7

numeric n[] ; n[3] := 10 ; n[5] := 13 ;

An array is a collection of variables of the same type that are assigned and accessed by indexing
the variable name, as in n[3] := 5. Multi-dimensional arrays are also supported. Since you
need a bit of imagination to find an application for 5-dimensional arrays, we restrict ourselves to
a two—dimensional example.

numeric n[][] ; n[2][3] := 10 ;
A nice feature is that the bounds of such an array needs not to be set beforehand. This also means

that each cell that you access is reported as unknown unless you have assigned it a value.

Conditions

The existence of boolean variables indicates the presence of conditionals. Indeed, the general form
of METAPOST’s if, then, else conditional follows.

if n=10 : draw p ; else : draw q ; fi ;

Watch the colons after the if and else clause. They may not be omitted. The semi-colons on the
other hand, are optional and depend on the context. You may say things like:

draw if n=10 : p ; else : q ; fi ;
Here we can omit a few semi-colons:
draw if n=10 : p else : q fi withcolor red ;

Adding semi-colons after p and q will definitely result in an error message, since the semi-colon
ends the draw operation and withcolor red becomes an isolated piece of nonsense.
There is no case statement available, but for most purposes, the following extension is adequate:

draw p withcolor if n<10 : red elseif n=10 : green else : blue fi ;
There is a wide repertoire of boolean tests available.

if picture p :
if known n :
if odd iz
if cycle ¢
Of course, you can use and, or, not, and () to construct very advanced boolean expressions. If

you have a bit of programming experience, you will appreciate the extensive support of condi-
tionals in METAPOST.

1.8 LooRs

Yet another programming concept present in METAPOST is the loop statement, the familiar “for
loop’ of all programming languages.

Conditions elcome

METAPOST

for i=0 step 2 until 20
draw (0,1i) ;
endfor ;

As explained convincingly in Niklaus Wirth’s book on algorithms and datastructures, the for loop
is the natural companion to an array. Given an array of length 7, you can construct a path out of
the points that make up the array.

draw for i=0 step 1 until n-1 : p[i] .. endfor p[n] ;

If the step increment is not explicitly stated, it has an assumed value of 1. We can shorten the
previous loop construct as follows:

draw for i=0 upto n-1 : p[i] .. endfor p[n] ;
After seeing if in action, the following for loop will be no surprise:
draw origin for i=0 step 10 until 100 : ..{down}(i,0) endfor ;

This gives the zig-zag curve:
L

You can use a loop to iterate over a list of objects. A simple 3-step iteration is:

for i=p,q,r :
fill i withcolor .8white ;
draw i withcolor red ;
endfor ;

Using for in this manner can sometimes save a bit of typing. The list can contain any expression,
and may be of different types.

In the previous example the i is an independent variable, local to the for loop. If you want
to change the loop variable itself, you need to use forsuffixes. In the next loop the paths p, q
and r are all shifted.

forsuffixes i = p, q, r :
i := i shifted (3cm,2cm) ;
endfor ;

Sometimes you may want to loop forever until a specific condition occurs. For this, METAPOST
provides a special looping mechanism:

numeric done[][], i, j, n ; n := 0 ;
forever :
i := round(uniformdeviate(10)) ; j := round(uniformdeviate(2)) ;
if unknown domel[i] [j]
drawdot (i*cm,j*cm) ; n :=n + 1 ; donel[i][j] :=n ;
fi ;
exitif n = 10 ;
endfor ;

elcome to METAPOST LOOpS

1.9

Here we remain in the loop until we have 10 points placed. We use an array to keep track of placed
points. The METAPOST macro uniformdeviate(n) returns a random number between 0 and n
and the round command is used to move the result toward the nearest integer. The unknown
primitive allows us to test if the array element already exists, otherwise we exit the conditional.
This saves a bit of computational time as each point is drawn and indexed only once.

The loop terminator exitif and its companion exitunless can be used in for, forsuffixes
and forever.

Macros

In the previous section we introduced upto. Actually this is not part of the built in syntax, but a
sort of shortcut, defined by:

def upto = step 1 until enddef ;

You just saw a macro definition where upto is the name of the macro. The counterpart of upto
is downto. Whenever you use upto, it is replaced by step 1 until. This replacement is called
expansion.

There are several types of macros. A primary macro is used to define your own operators. For
example:

primarydef p doublescaled s =
p xscaled (s/2) yscaled (s*2)
enddef ;

Once defined, the doublescaled macro is implemented as in the following example:
draw somepath doublescaled 2cm withcolor red ;

When this command is executed, the macro is expanded. Thus, the actual content of this command
becomes:

draw somepath xscaled lcm yscaled 4cm withcolor red ;

If in the definition of doublescaled we had added a semi—colon after (s*2), we could not have
set the color, because the semicolon ends the statement. The draw expects a path, so the macro
can best return one.

A macro can take one or more arguments, as in:

def drawrandomscaledpath (expr p, s) =
draw p xscaled (s/2) yscaled (s*2) ;
enddef ;

Macros elcome

METAP

When using this macro, it is expected that you will pass it two parameters, the first being a path,
the second a numeric scale factor.

drawrandomscaledpath(fullsquare, 3cm) ;

Sometimes we want to return a value from a macro. In that case we must make sure that any
calculations don’t interfere with the expectations. Consider:

vardef randomscaledpath(expr p, s) =

numeric r ; r := round(1l + uniformdeviate(4)) ;
p xscaled (s/r) yscaled (s*r)
enddef ;

Because we want to use the same value of r twice, we have to use an intermediate variable. By
using a vardef we hide everything but the last statement. It is important to distinguish def
macros from those defined with vardef. In the latter case, vardef macros are not a simple
expansion and replacement. Rather, vardef macros return the value of their last statement. In
the case of the randomscaledpath macro, a path is returned. This macro is used in the following
manner:

path mypath ; mypath := randomscaledpath(unitsquare,4cm) ;

Note that we send randomscaledpath a path (unitsquare) and a scaling factor (4cm). The macro
returns a scaled path which is then stored in the path variable mypath.
The following argument types are accepted:

expr something that can be assigned to a variable
text arbitrary METAPOST code ending with a ;
suffix a variable bound to another variable

An expression is passed by value. This means that in the body of the macro, a copy is used and
the original is left untouched. On the other hand, any change to a variable passed as suffix is also
applied to the original.

Local variables must be handled in a special manner, since they may conflict with variables
used elsewhere. This is because all variables are global by default. The way out of this problem
is using grouping in combination with saving variables. The use of grouping is not restricted to
macros and may be used anywhere in your code. Variables saved and declared in a group are
local to that group. Once the group is exited the variables cease to exist. Grouping is not bound
to macros and may be used anywhere in your code.

vardef randomscaledpath(expr p, s) =
begingroup ; save r ; numeric r ;

r := round(1 + uniformdeviate(4)) ;
p xscaled (s/r) yscaled (s*r)
endgroup
enddef ;

In this particular case, we could have omitted the grouping, since vardef macros are always
grouped automatically. Therefore, we could have defined the macro as:

IETAPOST Macros

1.10

vardef randomscaledpath(expr p, s) =

save r ; numeric r ; r := round(l + uniformdeviate(4)) ;
p xscaled (s/r) yscaled (s*r)
enddef ;

The command save r declares that the variable r is local to the macro. Thus, any changes to
the (new) numeric variable r are local and will not interfere with a variable r defined outside the
macro. This is important to understand, as variables outside the macro are global and accessible
to the code within the body of the macro.

Macro definitions may be nested, but since most METARPOST code is relatively simple, it is seldom
needed. Nesting is discouraged as it makes your code less readable.

Besides def and vardef, METAPOST also provides the classifiers primarydef, secondarydef
and tertiarydef. You can use these classifiers to define macros like those provided by MeTAPOST
itself:

primarydef x mod y = enddef ;
secondarydef p intersectionpoint q = . enddef ;
tertiarydef p softjoin q = enddef ;

A primary macro acts like the binary operators * or scaled and shifted. Secondary macros are
like +, - and logical or, and take less precedence. The tertiary operators like < or the path and
string concatenation operator & have tertiary macros as companions. More details can be found
in the METAFONT book. When it comes to taking precedence, METAPOST tries to be as natural as
possible, in the sense that you need to provide as few ()’s as possible. When in doubt, or when
surprised by unexpected results, use parentheses.

Arguments

The METAPOST macro language is rather flexible in how you feed arguments to macros. If you have
only one argument, the following definitions and calls are valid.

def test expr a = enddef ; test (a) ; test a ;
def test (expr a) enddef ; test (a) ; test a ;

A more complex definition is the following. As you can see, you can call the test macro in your
favorite way.

def test (expr a,b) (expr c,d) = enddef ;

test (a) (b) (c) (d) ;
test (a,b) (c,d) ;
test (a,b,c) (d) ;
test (a,b,c,d) ;

The type of the arguments is one of expr, primary or suffix. When fetching arguments, META-
PosT uses the type to determine how and what to grab. A fourth typeis text. Whenno parenthesis
are used, a text argument grabs everything upto the next semicolon.

def test (expr a) text b = enddef ;

METAP

Arguments elcome

test (a) ; test (a) b ;

You can use a text to grab arguments like withpen pencircle scaled 10 withcolor red.
Because text is so hungry, you may occasionally need a two stage definition:

def test expr a
def dotest (expr a) text b

dotext(a) enddef ;
enddef ;

test a ; test a b ;

This definition permits arguments without parenthesis, which is something you want with com-
mands like draw.

The vardef alternative behaves in a similar way. It always provides grouping. You need to
generate a return value and as a result may not end with a semicolon.

You may consider the whole vardef to be encapsulated into parenthesis and thereby to be a
(self contained) variable. Adding additional parenthesis often does more harm than good:

vardef test (expr a) =
(do tricky things with a ; manipulated_a)
enddef ;

Here the tricky things become part of the return value, which quite certainly is something that
you don’t want.
The three operator look-alike macro definitions are less flexible and have the definition scheme:

primarydef x test y = enddef ;
secondarydef x test y = enddef ;
tertiarydef x test y = enddef ;

When defining macros using this threesome you need to be aware of the associated priorities.
When using these definitions, you also have to provide your own grouping.

In the plain MeETAPOST macro collection (plain.mp) you can find many examples of clever
definitions. The following (simplified) version of min demonstrates how we use the argument
handler to isolate the first argument from the provided list, simply by using two arguments.

vardef min (expr u) (text t) =

save min_u ; min_u := u ;
for uu = t : if uwu<u : min_u := uu ; fi endfor
min_u

enddef ;

The special sequence @# is used to pick up a so called delimited argument :

vardef TryMe@#(expr x) =
% we can now use @#, which is just text
enddef ;

This feature is used in the definition of z as used in z1 or z234:

vardef z@# = (x@#,y0#) enddef ;

AETAPOST Arguments

1.11

Other applications can be found in the label drawing macros where the anchor point is assigned
to the obscure variable @#.

Pens

When drawing, three attributes can be applied to it: a dashpattern, a pen and/or a color. You may
consider an arrowhead an attribute, but actually it is just an additional drawing, appended to the
path.

The (predefined) pencircle attribute looks like:

withpen pencircle

where pencircle is a special kind of path, stored in a pen variable. Like any path, you can
transform it. You can scale it equally in all directions:

withpen pencircle scaled 1mm
You can also provide unequal scales, creating an elliptically shaped and rotated pen.
withpen pencircle xscaled 2mm yscaled 4mm rotated 30

In the following graphic, the circle in the center is drawn without any option, which means that
the default pen is used, being a pencircle with a radius of half a base point. The other three circles
are drawn with different pen specifications.

If you forget about the colors, the METARPOST code to achieve this is as follows.

path
draw ;

P ; p := fullcircle scaled 1lcm ;
p
draw p scaled 2 withpen pencircle ;
p
p

draw p scaled 3 withpen pencircle scaled 1mm ;

draw p scaled 4 withpen pencircle xscaled 2mm yscaled 4mm rotated 30 ;

If this were the only way of specifying a pen, we would be faced with a considerable amount of
typing, particularly in situations where we use pens similar to the fourth specification above. For
that reason, METRPOST supports the concept of a current pen. The best way to set this pen is to use
the pickup macro.

pickup pencircle xscaled 2mm yscaled 4mm rotated 30 ;

Pens elcome

METE

3=

This macro also stores some characteristics of the pen in variables, so that they can be used in (the
more complicated) calculations that are involved in situations like drawing font-like graphics.

If we substitute pencircle by pensquare, we get a different kind of shapes. In the non rotated
pens, the top, bottom, left and right parts of the curve are thinner.

You should look at pens in the way an artist does. He follows a shape and in doing so he or she
twists the pen (and thereby the nib) and puts more or less pressure on it.

The chance that you have an appropriate pen laying at your desk is not so large, but you can
simulate the following METRPOST’s pen by taking two pencils and holding them together in one
hand. If you position them in a 45 degrees angle, and draw a circle, you will get something like:

If you take a calligraphic pen with a thin edge of .5cm, you will get:

You can define such a pen yourself:

path p ; p := fullcircle xscaled 2cm yscaled 3cm ;
pen doublepen ; doublepen := makepen ((0,0)--(.3cm,.3cm)) ;
pickup doublepen ; draw p ;

Here we define a new pen using the pen command. Then we define a path, and make a pen out
of it using the makepen macro. The path should be a relatively simple one, otherwise METAPOST
will complain.

IETAPOST Pens

1.12

You can use makepen with the previously introduced withpen:
draw p withpen makepen ((0,0)--(.3cm,.3cm)) ;

and pickup:
pickup makepen ((0,0)--(.3cm,.3cm)) ; draw p ;

You can use makepen and makepath to convert paths into pens and vice versa.

Pens are very important when defining fonts, and METRFONT is meant to be a font creation tool.
Since MeTAPOST has a slightly different audience, it lacks some features in this area, but offers a
few others instead. Nevertheless, one can try to design a font using MetAPosT. Of course, pens are
among the designers best kept secrets. But even then, not every O is a nice looking one.

Joining lines

The way lines are joined or end is closely related to the way POSTSCRIPT handles this. By setting the
variables 1inejoinand linecap, you can influence the drawing process. Figure 1.1 demonstrates
the alternatives. The gray curves are drawn with both variables set to rounded.

By setting the variablemiterlimit, you can influence the mitering of joints. The next example
demonstrates that the value of this variable acts as a trigger.

interim linejoin := mitered ;
for i :=1 step 1 until 5
interim miterlimit := i*pt ;
draw ((0,0)--(.5,1)--(1,0)) shifted (1.5i,0) scaled 50pt
withpen pencircle scaled 10pt withcolor .62bred ;
endfor ;

The variables 1inejoin, linecap and miterlimit are so called internal variables. When we
prefix their assignments by interim, the setting will be local within groups, like beginfig ...
endfig).

AYAYAYAYA

METE

AP

Joining lines eléom

1.13

linejoin=mitered linejoin=mitered linejoin=mitered
linecap=butt linecap=rounded linecap=squared

linejoin=rounded linejoin=rounded linejoin=rounded

linecap=butt linecap=rounded linecap=squared

linejoin=beveled linejoin=beveled linejoin=beveled
linecap=butt linecap=rounded linecap=squared

Figure 1.1 The nine ways to end and join lines.

Colors

So far, we have seen some colors in graphics. It must be said that METARPOST color model is not that
advanced, although playing with colors in the METAPOST way can be fun. In later chapters we will

discuss some extensions that provide shading.

Colors are defined as vectors with three components: a red, green and blue one. Like pens,

colors have their with—command:

withcolor (.4,.5.,6)
You can define color variables, like:

color darkred ; darkred := (.625,0.0) ;
You can now use this color as:

withcolor darkred

Given that red is already defined, we also could have said:

Colors

39

withcolor .625red

Because for METAPOST colors are just vectors, you can do things similar to points. A color halfway
red and green is therefore accomplished with:

withcolor .5[red,green]

Since only the RGB color space is supported, this is about all we can tell about colors for this
moment. Later we will discuss some nasty details.

1.14 Dashes

A dash pattern is a simple picture that is build out of straight lines. Any slightly more complicated
picture will be reduced to straight lines and a real complicated one is rejected, and in this respect
METAPOST considers a circle to be a complicated path.

The next example demonstrates how to get a dashed line. First we built picture p, that we
apply to a path. Here we use a straight path, but dashing can be applied to any path.

picture p ; p := nullpicture ;
addto p doublepath ((0,0)--(3mm,3mm)) shifted (6mm,6mm) ;
draw (0,0)--(10cm,0) dashed p withpen pencircle scaled 1mm ;

This way of defining a pattern is not that handy, especially if you start wondering why you need
to supply a slanted path. Therefore, METAPOST provides a more convenient mechanism to define a
pattern.

picture p ; p := dashpattern(on 3mm off 3mm) ;
draw (0,0)--(10cm,0) dashed p withpen pencircle scaled 1mm ;

Most dashpatterns can be defined in terms of on and off. This simple on—off dashpattern is
predefined as picture evenly. Because this is a picture, you can (and often need to) scale it.

draw (0,0)--(10cm,0) dashed (evenly scaled 1mm)
withpen pencircle scaled 1mm ;

Opposite to a defaultpen, there is no default color and default dash pattern set. The macro
drawoptions provides you a way to set the default attributes.

drawoptions(dashed evenly withcolor red) ;

1.15 Text

Since METAFONT is meant for designing fonts, the only means for including text are those that
permit you to add labels to positions for the sole purpose of documentation.

Because METAPOST is derived from METAFONT it provides labels too, but in order to let users add
more sophisticated text, like a math formula, to a graphic, it also provides an interface to TgX.

Dashes Welcome to METAPOST

Because we will spend a whole chapter on using text in METAPOST we limit the discussion here
to a few fundamentals.

pair a ; a := (3cm,3cm) ;
label.top("top",a) ; label.bot("bot",a) ;
label.l1ft("1ft",a) ; label.rt ("rt" ,a) ;

These four labels show up at the position stored in the pair variable a, anchored in the way
specified after the period.

top
1ft rt
bot

The command dotlabel also typesets the point as rather visible dot.

pair a ; a := (3cm,3cm) ;
dotlabel.top("top",a) ; dotlabel.bot("bot",a) ;
dotlabel.lft("1ft",a) ; dotlabel.rt ("rt" ,a) ;

top
1lftert
bot

The command thelabel returns the typeset label as picture that you can manipulate or draw
afterwards.

pair a ; a := (3cm,3cm) ; pickup pencircle scaled 1lmm ;
drawdot a withcolor .625yellow ;
draw thelabel.rt("the right way",a) withcolor .625red ;

You can of course rotate, slant and manipulate such a label picture like any other picture.
ethe right way

The font can be specified in the string defaultfont and the scale in defaultscale. Labels are
defined using the low level operator infont. The next statement returns a picture:

draw "this string will become a sequence of glyphs (MP)"
infont defaultfont scaled defaultscale ;

The infont operator is not that clever and does not apply kerning. Also, typesetting math or
accented characters is not supported. The way out of this problem is using btex ... etex.

draw btex this string will become a sequence of glyphs (\TeX) etex ;
The difference between those two methods is shown below:

this string will become a sequence of glyphs (MP)
this string will become a sequence of glyphs (TgX)

The second line is typeset by Tgx and is properly kerned. As we may expect from TX, the \TeX
command becomes the TX logo.

Instead of passing strings to infont, you can also pass characters, using char, for example
char(73). When you use infont you normally expect the font to be ASCII conforming. If this

Welcome to METAPOST Text

is not the case, you must make sure that the encoding of the font that you use matches your

normally knows what it is dealing with.

expectations. In this respect the TgX based method is safer, because when set up properly, TX

1.16 Linear equations

In the previous sections, we used the assignment operator := to assign a value to a variable.
Although for most of the graphics that we will present in later chapters, an assignment is appro-

spirit of the designers of METAFONT and METAPOST.

priate, specifying a graphic in terms of expressions is not only more flexible, but also more in the

The MeTAFONT book and METARPOST manual provide lots of examples, some of which involve

using expressions can be a rewarding challenge.

math that we don’t consider to belong to everyones repertoire. But, even for non mathematicians

The next introduction to linear equations is based on my first experiences with METAPOST and
involves a mathematical challenge posed by a friend. I quickly ascertained that a graphical proof
was far more easy than some proof with a lot of sin(this) and cos(that) and long forgotten formulas.

I was expected to prove that the lines connecting the centers of four squares drawn upon the
four sides of a quadrilateral were perpendicular (see figure 1.2).

Zoy VA

Z14

1
Zy \

Linear equations

| Z3)
Zn ‘

Zgs

Zy
Figure 1.2 The problem.

Zy

TARPOST

Because we have seen most of the METAPOST commands and features, we will package the solution
in a macro. Also, because this macro has an educational purpose, we will add some labels to the
points that we use. However, generating these labels is optional and controlled by a boolean:

boolean show_labels ; show_labels := false ;

The macro accepts four pairs of coordinates that determine the central quadrilateral. All of them
are expressions.

def draw_problem (expr n, p, q, r, S) =
beginfig(n) ;

We have not discussed the beginfig macro. In a MeTAPOST file, you can code many graphics. Each
graphic is surrounded by beginfig and endfig. The number, here the variable n, will become
the suffix of the output file.

Because we want to call this macro more than once, we have to save the locally used values.
Instead of declaring local variables, one can hide their use from the outside world. In most
cases variables behave globally. If we don't save them, subsequent calls will lead to errors due to
conflicting equations. We can omit the grouping commands, because we wrap the graphic in a
figure, and figures are grouped already:.

We will use the predefined z variable, or actually a macro that returns a variable. This variable
has two components, an x and y coordinate. So, we don't save z, but the related variables x and y.

save X, y, a, b, ¢, d, e, £, g, h ;

We draw four squares and instead of hard coding their corner points, we use METAPOST’s equation
solver. Watch the use of = which means that we just state dependencies. In languages like PERL,
the equal sign is used in assignments, but in METAPOST it is used to express relations.

In a first version, we will just name a lot of simple relations, as we can read them from a sketch
drawn on paper.

z11l = z42 = p ; z21 = z12 =
z31 =222 =r ; 241 = z32 = s ;

|
Q

a=x12 - x11 ; b = y12 - yi11 ;
c =x22 - x21 ; d =y22 - y21 ;
e =x32 - x31 ; £ =y32 - y31 ;
g =x42 - x41 ; h = y42 - y41 ;
z11 = (x11, yi1) ; z12 = (x12, y12) ;

z13 = (x12-b, yi12+a) ; zl1l4 = (x11-b, yili+a) ;

z21 = (x21, y21) ; 222 = (x22, y22) ;
z23 = (x22-d, y22+c) ; z24 = (x21-d, y2i+c) ;

z31 = (x31, y31) ; 232 = (x32, y32) ;
z33 = (x32-f, y32+e) ; z34 = (x31-f, y3l+e) ;

z41 = (x41, y41) ; z42 = (%42, y42) ;
z43 = (x42-h, y42+g) ; z44 = (x41-h, y4l+g) ;

METAPOST Linear equations

N

For those interested in the mathematics behind this code, we add a short explanation. Absolutely
key to the construction is the fact that you traverse the original quadrilateral in a clockwise
orientation.

What is really going on here is vector geometry. You calculate the vector from z1; to z, (the
first side of the original quadrilateral) with:

(a,b) = z12 - zl11 ;

This gives a vector that points from z1; to z1. Now, how about an image that shows that the vector
(=b,a) is a 90 degree rotation in the counterclockwise direction. Thus, the points z13 and z14 are
easily calculated with vector addition.

z13
z14

z12 + (-b,a) ;
z11 + (-b,a) ;

This pattern continues as you move around the original quadrilateral in a clockwise manner.*
The code that calculates the pairs a through h, can be written in a more compact way.

(a,b) = z12 - z11 ; (c,d) = z22 - z21 ;
(e,f) = z32 - z31 ; (g,h) = z42 - z41 ;

Now we can draw the squares and their diagonals, using an acceptable line thickness.
pickup pencircle scaled .5pt ;
The squares and their diagonals are drawn with the following code.

draw z11--z12--z13--z14--cycle ; draw zl11--z13 ; draw z12--z14 ;
draw z21--z22--z23--z24--cycle ; draw z21--z23 ; draw z22--z24 ;
draw z31--z32--z33--z34--cycle ; draw z31--z33 ; draw z32--z34 ;
draw z41--z42--z43--z44--cycle ; draw z41--z43 ; draw z42--z44 ;

The centers of each square can also be calculated by MeTAPOST. The next lines define that those
points are positioned halfway the extremes.

z1
z3

0.5[z11,z13] ; =z2
0.5[z31,z33] ; z4

0.5[z21,z23] ;
0.5[z41,z43] ;

We now connect the centers of the squares. To make them stand out, we choose an alternative
linestyle:

draw z1--z3 dashed evenly ;
draw z2--z4 dashed evenly ;

Just to be complete, we add a symbol that marks the right angle. First we determine the common
point of the two lines, that lays at whatever point METAPOST finds suitable.

z0 = whatever[z1,z3] = whatever[z2,z4] ;
mark_rt_angle (zl, z0, z2) ; % z2 is not used at all

Thanks to David Arnold for this bonus explanation.

METAPOST

Linear equations elcome

So far, most equations are rather simple, and in order to solve them, MeETAPOST did not have to
work real hard. The only boundary condition is that in order to find a solution, METARPOST must be
able to solve all dependencies.

The actual value of the whatever variable is that it saves us from introducing a slew of variables
that will never be used again. We could write:

z0 = A[z1,z3] = B[z2,z4] ;

and get the same result, but the whatever variable saves us the trouble of introducing intermediate
variables for which we have no use once the calculation is finished.

The macro mark_rt_angle draws the angle symbol and later we will see how it is defined.
First we draw the labels. Unfortunately we cannot package btex ... etexintoamacro, because
it is processed in a rather special way. Each btex ... etex occurance is filtered from the source
and converted into a snippet of TeX code. When passed through TgX, each snippet becomes a
page, and an auxiliary program converts each page into a METAPOST picture definition, which is
loaded by MeTAPosT. The limitation lays in the fact that the filtering is done independent from the
METAPOST run, which means that loops (and other code) are not seen at all. Later we will introduce
the MetaFun way around this.

So, in order to get all the labels typeset, we have to put a lot of code here.

if show_labels:

We use a bigger pen for drawing the dots.

The macro dotlabel draws a dot and places the typeset label.

pickup pencircle scaled 5pt ;

dotlabel.
dotlabel.
dotlabel.
dotlabel.

dotlabel.
dotlabel.
dotlabel.
dotlabel.

dotlabel.
dotlabel.
dotlabel.
dotlabel.

dotlabel.
dotlabel.
dotlabel.
dotlabel.

dotlabel.
dotlabel.
dotlabel.

METE

AP

11ft(btex
ulft(btex
ulft (btex
11ft(btex

1rt (btex
11ft (btex
urt (btex
ulft (btex

urt (btex
ulft (btex
urt (btex
urt (btex

1rt (btex
urt (btex
11ft (btex
1rt (btex

urt (btex
1ft (btex
top (btex

7_{11}
$Z2_{12}%
$z7_{13}$
$z7_{14}%

z_{21}
7_{22}
$z_{23}%
7_{24}

Z_{31}
Z_{32}
Z_{33}
Z_{341}

7_{41}
$z2_{42}%
7_{43}
$Z_{44}%

etex,
etex,
etex,
etex,

etex,
etex,
etex,
etex,

etex,
etex,
etex,
etex,

etex,
etex,
etex,
etex,

z11)
z12)
z13)
z14)

z21)
z22)
z23)
z24)

z31)
z32)
z33)
z34)

z41)
z42)
z43)
z44)

Z_{0} etex, z0) ;
Z_{1} etex, zl1) ;
Z_{2} etex, z2) ;

’

Linear equations

dotlabel.rt (btex Z_{3} etex, z3) ;
dotlabel.bot (btex Z_{4} etex, z4) ;

Now we can end the condition that enables us to hide the labels and the macro. Watch how we
also end the figure.

fi ;
endfig ;

enddef ;

The definition of mark_rt_angle is copied from the METAPOST manual and shows how compact
a definition can be (see page 13 for an introduction to zscaled).

angle_radius = 10pt ;

def mark_rt_angle (expr a, b, c) =
draw ((1,0)--(1,1)--(0,1))
zscaled (angle_radius*unitvector(a-b))
shifted b
enddef ;

We are going to draw a lot of pictures, so we define an extra macro. This time we hard-code some
values. The fractions i and j are responsible for the visual iteration process.

def do_draw_problem (expr n, i, j)
draw_problem (4000+n,
(400pt,400pt), (300pt,600pt)
i [(300pt,600pt) , (550pt,800pt)]
j [(400pt,400pt) , (650pt,500pt)]
enddef ;

-

4
-

The beginfigand endfig macros package the code into a graphic capsule which is output to the
resulting file. We will have more to say about this later.

Of course we could have used a loop construct here, but defining auxiliary macros probably
takes more time than simply calling the drawing macro directly. The results are shown on a
separate page.

It does not need that much imagination to see the four sided problem converge to a three sided
one, which itself converges to a two sided one. In the two sided alternative it’s not that hard to
prove that the angle is indeed 90 degrees.

do_draw_problem(40, 1.0, 1.0) ; do_draw_problem(41, 0.8, 1.0) ;
do_draw_problem(42, 0.6, 1.0) ; do_draw_problem(43, 0.4, 1.0) ;
do_draw_problem(44, 0.2, 1.0) ; do_draw_problem(45, 0.0, 1.0) ;
do_draw_problem(30, 0.0, 1.0) ; do_draw_problem(31, 0.0, 0.8) ;
do_draw_problem(32, 0.0, 0.6) ; do_draw_problem(33, 0.0, 0.4) ;
do_draw_problem(34, 0.0, 0.2) ; do_draw_problem(35, 0.0, 0.0) ;

We already showed a picture with coordinates. This picture was generated using some alternative
coordinates.

Linear equations elcome to METAPOST

& L0 4>
B BL B

A <
P

def do_draw_problem (expr n, i, j)
draw_problem (4000+n,
(400pt,400pt) , (400pt,600pt)
i [(400pt,600pt) , (550pt,600pt)]
j [(400pt,400pt), (550pt,400pt)]) ;
enddef ;

show_labels := true ;

do_draw_problem (50, 0.6, 1.0) ;

As soon as you can see a clear pattern in some code, it’s time to consider using loops. In the
previous code, we used semi indexes, like 12 in z12. In this case 12 does reflect something related
to square 1 and 2, but in reality the 12 is just twelve. This does not harm our expressions.

A different approach is to use a two dimensional array. In doing so, we can access the variables
more easily using loops. If we omit the labels, and angle macro, the previously defined macro can
be reduced considerably.

def draw_problem (expr n, p, q, r, s) = % number and 4 positions
beginfig(n) ;
save X, Yy ;
z[11[1] = p ; z[2][1] = q ; z[3][1] = ¢ ; z[4][1] = s ;

for i=1 upto 4 :
z[i][1] = (x[i][1],y[i]1[1]) = z[if i=1: 4 else: i-1 fil[2] ;

z[i][2] = (x[i][2],y[i][2]) ;
z[i1[3] = (x[i][2]-y[il[2]+y[il (1], y(il[2]+x[i][2]-x[i]1[1]) ;
z[i][4] = (x[i][1]-yl[il[2]+y[il (1], y(il[1)+x[i][2]-x[i][1]) ;

z[i] = 0.5[z[i]1[1],=z[i]1[3]] ;

endfor ;
z[0] = whatever[z[1],z[3]] = whatever([z[2],z[4]] ;
pickup pencircle scaled .5pt ;

for i=1 upto 4 :
draw z[i][1]--z[i] [2]--z[i] [3]1--z[i] [4]--cycle ;
draw z[i][1]--z[i][3] ; draw =z[i] [2]--z[i][4] ;
if i<3 : draw z[i]--z[i+2] dashed evenly fi ;
endfor ;

draw ((1,0)--(1,1)--(0,1))
zscaled (unitvector(z[1]-z[0])*10pt)
shifted z[0] ;

endfig ;
enddef ;

I think that we could argue quite some time about the readability of this code. If you start from a
sketch, and the series of equations does a good job, there is hardly any need for such improvements

Linear equations elcome

METAPOST

1.17

to the code. On the other hand, there are situations where the simplified (reduced) case can be
extended more easily, for instance to handle 10 points instead of 4. It all depends on how you
want to spend your free hours.

Clipping

For applications that do something with a drawing, for instance TgX embedding a graphic in a
text flow, it is important to know the dimensions of the graphic. The maximum dimensions of a
graphic are specified by its bounding box.

A bounding box is defined by its lower left and upper right corners. If you open the POSTSCRIPT
file produced by METRPOST, you may find lines like:

%%BoundingBox: -46 -46 46 46
or, when supported,
%/%HiResBoundingBox: -45.35432 -45.35432 45.35432 45.35432

The first two numbers define the lower left corner and the last two numbers the upper right corner.
From these values, you can calculate the width and height of the graphic.

A graphic may extend beyond its bounding box. It depends on the application that uses the
graphic whether that part of the graphic is shown.

In METAPOST you can ask for all four points of the bounding box of a path or picture as well as
the center.

llcorner p lower left corner
lrcorner p lower right corner
urcorner p upper right corner
ulcorner p upper left corner
center p the center point

You can construct the bounding box of path p out of the four points mentioned:
llcorner p -- lrcorner p -- urcorner p —— ulcorner p -- cycle

You can set the bounding box of a picture, which can be handy if you want to build a picture in
steps and show the intermediate results using the same dimensions as the final picture, or when
you want to show only a small piece.

METAPOST Clipping

1.18

£ill fullcircle scaled 2cm withcolor .625yellow ;
setbounds currentpicture to unitsquare scaled 1cm ;
draw unitsquare scaled lcm withcolor .625red ;

Here, we set the bounding box with the command setbounds, which takes a path.

raphic extends beyond the bounding box, but the bounding box determines the placement
and therefore the spacing around the graphic. We can get rid of the artwork outside the bounding
box by clipping it.

£ill fullcircle scaled 2cm withcolor .625yellow ;
clip currentpicture to unitsquare scaled 1lcm ;

The resulting picture is just as large but shows less of the picture.

Some extensions

We will now encounter a couple of transformations that can make your life easy when you use
METAPOST for making graphics like the ones demonstrated in this document. These transformations
are not part of standard MeTAPOST, but come with MetaFun.

A very handy extension is enlarged. Although you can feed it with any path, it will return a
rectangle larger or smaller than the boundingbox of that path. You can specify a pair or a numeric.

path p ; p := fullsquare scaled 2cm ;

drawpath p ; drawpoints p ;

p := (p shifted (3cm,0)) enlarged (.5cm,.25cm) ;
drawpath p ; drawpoints p ;

[] (]
[] (]
There are a few more alternatives, like bottomenlarged, rightenlarged, topenlarged and
leftenlarged.
The cornered operator will replace sharp corners by rounded ones (we could not use rounded
because this is already in use).

n;

]
Some extensions % e

path p ; p := ((1,00--(2,0)--(2,2)--(1,2)--(0,1)--cycle)
xysized (4cm,2cm) ;

drawpath p ; drawpoints p ;

p := (p shifted (5cm,0)) cornered .5cm ;

drawpath p ; drawpoints p ;

The smoothed operation is a less subtle one, since it operates on the bounding box and thereby
can result in a different shape.

path p ; p := ((1,0)0--(2,0)--(2,2)--cycle) xysized (4cm,2cm) ;
drawpath p ; drawpoints p ;

p := (p shifted (5cm,0)) smoothed .5cm ;

drawpath p ; drawpoints p ;

The next one, simplified, can be applied to paths that are constructed automatically. Instead of
testing for duplicate points during construction, you can clean up the path afterwards.

path p ; p :=
(€(0,0)--(1,0)--(2,0)--(2,1)--(2,2)--(1,2)--(0,2)--(0,1) --cycle)
xysized (4cm,2cm) ;

drawpath p ; drawpoints p ;

p := simplified (p shifted (5cm,0)) ;

drawpath p ; drawpoints p ;

A cousin of the previous operation is unspiked. This one removes ugly left overs. It works well
for the average case.

path p ; p :=
(€0,00--(2,0)--(3,1)--(2,0)--(2,2)--(1,2)—-(1,3)--(1,2)--(0,1) --cycle)
xysized (4cm,2cm) ;

drawpath p ; drawpoints p ;

p := unspiked (p shifted (5cm,0)) ;

drawpath p ; drawpoints p ;

elcome to METAPOST Some extensions

[] [] [] (]
There are a couple of operations that manipulate the path in more drastic ways. Take randomized.

path p ; p := fullsquare scaled 2cm ;
drawpath p ; drawpoints p ;

p := (p shifted (5cm,0)) randomized .5cm ;
drawpath p ; drawpoints p ;

Or how about squeezed:

path p ; p := fullsquare scaled 2cm randomized .5cm ;
drawpath p ; drawpoints p ;

p := (p shifted (5cm,0)) squeezed .5cm ;

drawpath p ; drawpoints p ;

A punked path is, like a punked font, a font with less smooth curves (in our case, only straight
lines).

path p ; p := fullcircle scaled 2cm randomized .5cm ;
drawpath p ; drawpoints p ;

p := punked (p shifted (5cm,0)) ;

drawpath p ; drawpoints p ;

A curved path on the other hand has smooth connections. Where in many cases a punked path
becomes smaller, a curved path will be larger.

Some extensions elcome

METAP

path p ; p := fullsquare scaled 2cm randomized .5cm ;
drawpath p ; drawpoints p ;

p := curved (p shifted (5cm,0)) ;

drawpath p ; drawpoints p ;

The blownup operation scales the path but keeps the center in the same place.

path p ; p := fullsquare xyscaled (4cm,lcm) randomized .5cm ;
drawpath p ; drawpoints p ;

p := p blownup .5cm ;

drawpath p ; drawpoints p ;

These examples demonstrate that a path is made up out of points (something that you probably
already knew by now). The METAPOST operator of can be used to ‘access’ a certain point at a curve.

path p ; p := fullsquare xyscaled (3cm,2cm) randomized .5cm ;
drawpath p ; drawpoints p ; drawpointlabels p ;
draw point 2.25 of p withpen pencircle scaled 5mm withcolor .62bred ;

3 2

(]
4 1
To this we add two more operators: on and along. With on you get the point at the supplied
distance from point 0; with along you get the point at the fraction of the length of the path.

path p, q, r ;

p := fullsquare xyscaled (2cm,2cm) randomized .5cm ;
q := p shifted (3cm,0) ; r := q shifted (3cm,0) ;
drawpath p ; drawpoints p ; drawpointlabels p ;
drawpath q ; drawpoints q ; drawpointlabels q ;

Or

JETAPOST Some extensions

drawpath r ; drawpoints r ; drawpointlabels r ;
pickup pencircle scaled 5mm ;

draw point 2.25 of p withcolor .625red ;
draw point 2.50cm on q withcolor .62byellow ;
draw point .45 along r withcolor .625white ;

Beware: the length of a path is the number of points minus one. The shapes below are constructed
from 5 points and a length of 4. If you want the length as dimension, you should use arclength.

o4°0 o4°0 .
1 1 1

We will now play a bit with simple lines. With cutends, you can (indeed) cut off the ends of a
curve. The specification is a dimension.

path p ; p := (Ocm,Ocm) -- (4cm,1cm) ;

path q ; q := (5cm,0cm){right} .. (9cm,lcm) ;

drawpath p ; drawpoints p ; drawpath q ; drawpoints q ;

P := p cutends .b5cm ; q := q cutends .5cm ;

drawpathoptions (withpen pencircle scaled 5pt withcolor .625yellow) ;
drawpointoptions(withpen pencircle scaled 4pt withcolor .625red) ;
drawpath p ; drawpoints p ; drawpath q ; drawpoints q ;
resetdrawoptions ;

/) ’

P pu /

As with more operators, cutends accepts a numeric or a pair. Watch the subtle difference between
the next and the previous use of cutends.

path p ; p := (Ocm,0) .. (4cm,0) .. (8cm,0) .. (4cm,0) .. cycle ;
drawpath p ; drawpoints p ; p := p cutends (2cm,lcm) ;
drawpathoptions (withpen pencircle scaled 5pt withcolor .625yellow) ;
drawpointoptions(withpen pencircle scaled 4pt withcolor .625red) ;
drawpath p ; drawpoints p ;

resetdrawoptions ;

When stretched is applied to a path, it is scaled but the starting point (point 0) keeps its location.
The specification is a scale.

Some extensions elcome

METAP

path p ; p := (Ocm,0) .. (3cm,lcm) .. (4cm,0) .. (5cm,1lcm) ;

drawpath p ; drawpoints p ; p := p stretched 1.1 ;

drawpathoptions (withpen pencircle scaled 2.5pt withcolor .625yellow) ;
drawpointoptions(withpen pencircle scaled 4.0pt withcolor .625red) ;
drawpath p ; drawpoints p ; resetdrawoptions ;

We can scale in two directions independently or even in one direction by providing a zero value.
In the next example we apply the stretch two times.

path p ; p := (Ocm,0) .. (3cm,lcm) .. (4cm,0) .. (5cm,1lcm) ;

drawpath p ; drawpoints p ; p := p stretched (.75,1.25) ;
drawpathoptions (withpen pencircle scaled 2.5pt withcolor .625yellow) ;
drawpointoptions(withpen pencircle scaled 4.0pt withcolor .625red) ;
drawpath p ; drawpoints p ; p := p stretched (0,1.5) ;

drawpathoptions (withpen pencircle scaled 4.0pt withcolor .625red) ;
drawpointoptions(withpen pencircle scaled 2.5pt withcolor .625yellow) ;
drawpath p ; drawpoints p ; resetdrawoptions ;

[]
We already met the randomize operator. This one is is the chameleon under the operators.

draw fullsquare xyscaled (4cm,2cm)
randomized .25cm
shifted origin randomized (lcm, 2cm)
withcolor red randomized (.625, .850)
withpen pencircle scaled (5pt randomized 1pt) ;

So, randomized can handle a numeric, pair, path and color, and it specification can be a numeric,
pair or color, depending on what we're dealing with.

AETAPOST Some extensions

&

In the previous example we also see xyscaled in action. Opposite to scaled, xscaled and
yscaled, this is not one of METAPOST build in features. The same is true for the . sized operators.

picture p ; p := image
(draw fullsquare
xyscaled (300,800)
withpen pencircle scaled 50
withcolor .625 yellow ;) ;
draw p xysized (3cm,2cm) shifted (bbwidth(currentpicture)+.5cm,0) ;

draw p xysized 2cm shifted (bbwidth(currentpicture)+.5cm,0) ;
draw p xsized 1lcm shifted (bbwidth(currentpicture)+.5cm,0) ;
draw p ysized 2cm shifted (bbwidth(currentpicture)+.5cm,0) ;

Here, the image macro creates an (actually rather large) picture. The last four lines actually draw
this picture, but at the given dimensions. Watch how the line width scales accordingly. If you
don’t want this, you can add the following line:

redraw currentpicture withpen pencircle scaled 2pt ;

Now we get:

In this example we also used bbwidth (which has a companion macro bbheight). You can apply
this macro to a path or a picture.

1.19 Cutting and pasting

When enhancing or building a graphic, often parts of already constructed paths are needed. The
subpath, cutbefore and cutafter operators can be used to split paths in smaller pieces. In
order to do so, we must know where we are on the path that is involved. For this we use points
on the path. Unfortunately we can only use these points when we know where they are located.
In this section we will combine some techniques discussed in previous sections. We will define a
few macros, manipulate some paths and draw curves and points.

D
o]
Ul
|

Cutting and pasting 1

2
3 o 1
[) [)
4 e
[) [)
5 ° 7
6

This circle is drawn by scaling the predefined path fullcircle. This path is constructed using
8 points. As you can see, these points are not distributed equally along the path. In the following
graphic, the second and third point of the curve are colored red, and point 2.5 is colored yellow.
Point 0 is marked in black. This point is positioned halfway point 2 and 3.

It is clear that, unless you know exactly how the path is constructed, other methods should
be available. A specific point on a path is accessed by point ... of, but the next example
demonstrates two more alternatives.

path p ; p := fullcircle scaled 3cm xscaled 2 ;
pickup pencircle scaled 5mm ;

draw p withcolor .625white ;
draw point 3 of p withcolor .62bred ;

draw point .6 along p withcolor .62b5yellow ;
draw point 3cm on P

So, in addition to on to specify a point by number (in METAPOST terminology called time), we have
along to specify a point as fraction of the path, and on to specify the position in a dimension.

The on and along operators are macros and can be defined as:

[] H_NEEN
lelcome to METRFO

. ﬁ- e tOMER % Cutting and pasting

primarydef len on pat =
(arctime len of pat) of pat
enddef ;

primarydef pct along pat =
(arctime (pct * (arclength pat)) of pat) of pat
enddef ;

These macros introduce two new primitives, arctime and arclength. While arctime returns a
number denoting the time of the point on the path, arclength returns a dimension.

“When mathematicians draw parametric curves, they frequently need to indicate the direction
of motion. I often have need of a little macro that will put an arrow of requested length, anchored
at a point on the curve, and bending with the curve in the direction of motion.”

When David Arnold asked me how this could be achieved, the fact that a length was requested
meant that the solution should be sought in using the primitives and macros we introduced a few
paragraphs before. Say that we want to call for such an arrow as follows.

path p ; p := fullcircle scaled 3cm ;

pair q ; q := point .4 along p ;

pickup pencircle scaled 2mm ;

draw P withcolor .62bwhite ;
drawarrow somearrow(p,q,2cm) withcolor .625red ;
draw q withcolor .62byellow ;

Because we want to follow the path, we need to construct the arrow from this path. Therefore, we
first reduce the path by cutting off the part before the given point. Next we cut off the end of the
resulting path so that we keep a slice that has the length that was asked for. Since we can only cut
at points, we determine this point using the arctime primitive.

vardef somearrow (expr pat, loc, len) =
save p ; path p ; p := pat cutbefore loc ;
(p cutafter point (arctime len of p) of p)
enddef ;

By using a vardef we hide the intermediate assignments. Such vardef is automatically sur-
rounded by begingroup and endgroup, so the save is local to this macro. When processed, this
code produces the following graphic:

This graphic shows that we need a bit more control over the exact position of the arrow. It would
be nice if we could start the arrow at the point, or end there, or center the arrow around the point.
Therefore, the real implementation is a bit more advanced.

METAP

Cutting and pasting elcome

vardef pointarrow (expr pat, loc, len, off) =
save 1, r, s, t ; path 1, r ; numeric s ; pair t ;

t := if pair loc : loc else : point loc along pat fi ;
s := len/2 - off ; if s<=0 : s := 0 elseif s>len : s := len fi ;
r := pat cutbefore t ;
r := (r cutafter point (arctime s of r) of r) ;
s := len/2 + off ; if s<=0 : s := 0 elseif s>len : s := len fi ;
1 := reverse (pat cutafter t) ;
1 := (reverse (1 cutafter point (arctime s of 1) of 1)) ;
aQ..r)
enddef ;

This code fragment also demonstrates how we can treat the 1oc argument as pair (coordinates) or
fraction of the path. We calculate the piece of path before and after the given point separately and
paste them afterwards as (1. .r). By adding braces we can manipulate the path in expressions
without the danger of handling r alone.

We can now implement left, center and right arrows by providing this macro the right param-
eters. The offset (the fourth parameter), is responsible for a backward displacement. This may
seem strange, but negative values would be even more confusing.

def rightarrow (expr p,t,l) = pointarrow(p,t,l,-1) enddef ;
def leftarrow (expr p,t,l) = pointarrow(p,t,l,+1l) enddef ;
def centerarrow(expr p,t,1) pointarrow(p,t,1, 0) enddef ;

We can now apply this macro as follows:

path p ; p := fullcircle scaled 3cm ;

pickup pencircle scaled 2mm ;

draw p withcolor .625white ;

drawarrow leftarrow (p, .4 ,2cm) withcolor .625red ;
drawarrow centerarrow(p,point 5 of p,2cm) withcolor .625yellow ;
draw point .4 along p withcolor .62byellow ;

draw point b5 of p withcolor .625red ;

r&

Watch how we can pass a point (point 5 of p) as well as a fraction (.4). The following graphic
demonstrates a few more alternatives.

IETAPOST Cutting and pasting

-y

W — 73;

The arrows are drawn using the previously defined macros. Watch the positive and negative

offsets in call to pointarrow

drawarrow leftarrow (p,point 1 of p,2cm)
drawarrow centerarrow (p,point 2 of p,2cm)
drawarrow rightarrow (p,point 3 of p,2cm)
drawarrow pointarrow (p,.60,4cm,+.5cm)
drawarrow pointarrow (p,.75,3cm,-.5cm)
drawarrow centerarrow (p,.90,3cm)

Cutting and pasting

withcolor
withcolor
withcolor
withcolor
withcolor
withcolor

red
blue
green
yellow
cyan
magenta

b
b

)

b

NI IRD G S Cutting and past
vve 0, 1P
ENEN NEEEE N utting and pasting

A few more details

2.1

In this chapter we will see how to define a METRPOST graphic, and how to include it in a document.
Since the exact dimensions of graphics play an important role in the placement of a graphic, we
will explore the way a bounding box is constructed.

We will also pay attention to the usage of units and the side effects of scaling and shifting,
since they can contradict our expectations in unexpected ways. Furthermore we will explore a
few obscure areas.

Making graphics

We will use METAPOST in a rather straightforward way, and we will try to avoid complicated math
as much as possible. We will do a bit of drawing, clipping, and moving around. Occasionally we
will see some more complicated manipulations.

When defined as stand—alone graphic, a MeTAPOST file looks like this:

% Let’s draw a circle.

beginfig (7) ;
draw fullcircle scaled 3cm withpen pencircle scaled 1cm ;
endfig ;

end .

The main structuring components in such a file are the beginfig and endfig macros. Like in
a big story, the file has many sub-sentences, where each sub—sentence ends with a semi-colon.
Although the end command at the end of the file concludes the story, putting a period there is
a finishing touch. Actually, after the end command you can put whatever text you wish, your
comments, your grocery list, whatever. Comments in METAPOST, prefixed by a percent sign, as in %
Let’s draw a circle, areignored by the interpreter, but useful reminders for the programmer.

If the file is saved as yourfile.mp, then the file is processed by METAPOST by issuing the
following command:

mpost yourfile

after which you will have a graphic called yourfile.7, which contains a series of POSTSCRIPT
commands. Because METAPOST does all the work, this file is efficient and compact. The number
of distinct POSTSCRIPT operators used is limited, which has the advantage that we can postprocess
this file rather easily.

We can view this file in a POSTSCRIPT viewer like GHOSTVIEW or convert the graphic to PDF and
view the result in a suitable PDF viewer like ACROBAT. Of course, you can embed such a file in a
CONTgXT document, using a command like:

\externalfigure[yourfile.7]

We will go in more detail about embedding graphics in chapter 3.
If you have installed CONTEXT, somewhere on your system there resides a file mp-tool.mp. If
you make a stand-alone graphic, it’s best to put the following line at the top of your file:

> details

Making graphics qe

2.2

input mp-tool ;

By loading this file, the resulting graphic will provide a high resolution bounding box, which
enables more accurate placement. The file also sets the prologues := 1 so that viewers like
GHOSTVIEW can refresh the file when it is changed.

Next we will introduce some more METAPOST commands. From now on, we will omit the
encapsulating beginfigand endfig macros. If you want to process these examples yourself, you
should add those commands.

pickup pencircle scaled .5cm ;

draw unitsquare xscaled 8cm yscaled lcm withcolor .625white ;
draw origin withcolor .625yellow ;

pickup pencircle scaled 1pt ;

draw bbox currentpicture withcolor .62bred ;

In this example we see a mixture of so called primitives as well as macros. A primitive is something
hard coded, a built-in command, while a macro is a collection of such primitives, packaged in a
way that they can be recalled easily. Where scaled is a primitive and draw a macro, unitsquare
is a path variable, an abbreviation for:

unitsquare = (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle ;

The double dash (--) is also a macro, used to connect two points with a straight line segment.
However, cycle is a primitive, which connects the last point of the unitsquare to the first on
unitsquare’s path. Path variables must first be declared, as in:

path unitsquare ;

A large collection of such macros is available when you launch metAposT. Consult the METRPOST
manual for details.

In the first line of our example, we set the drawing pen to .5cm. You can also specify such a
dimension in other units, like points (pt). When no unit is provided, MeTrPosT will use a big point
(bp) , the POSTSCRIPT approximation of a point.

The second line does just as it says: it draws a rectangle of certain dimensions in a certain
color. In the third line we draw a colored dot at the origin of the coordinate system in which we
are drawing. Finally, we set up a smaller pen and draw the bounding box of the current picture,
using the variable currentpicture. Normally, all drawn shapes end up in this picture variable.

Bounding boxes

If you take a close look at the last picture in the previous section, you will notice that the bounding
box is larger than the picture. This is one of the nasty side effects of METAPOST’s bbox macro. This
macro draws a box, but with a certain offset. The next example shows how we can manipulate
this offset. Remember that in order to process the next examples, you should embed the code

tails Bounding boxes

in beginfig and endfig macros. Also, in stand-alone graphics, don't forget to say \input
mp-tool first.

pickup pencircle scaled .5cm ;

draw unitsquare xscaled 8cm yscaled lcm withcolor .625white ;
path bb ; bboxmargin := Opt ; bb := bbox currentpicture ;
draw bb withpen pencircle scaled 1pt withcolor .625red ;

In the third line we define a path variable. We assign the current bounding box to this variable,
but first we set the offset to zero. The last line demonstrates how to draw such a path. Instead of
setting the pen as we did in the first line, we pass the dimensions directly.

Where draw draws a path, the £i11 macro fills one. In order to be filled, a path should be closed,
which is accomplished by the cycle primitive, as we saw in constructing the unitsquare path.

pickup pencircle scaled .5cm ;

£ill unitsquare xscaled 8cm yscaled lcm withcolor .625white ;
path bb ; bboxmargin := Opt ; bb := bbox currentpicture ;
draw bb withpen pencircle scaled 1pt withcolor .625red ;

This example demonstrates that when we fill the path, the resulting graphic is smaller. Where
draw follows the center of a path, £i11 stays inside the path.

A third alternative is the filldraw macro. From the previous examples, we would expect a
bounding box that matches the one of the drawn path.

pickup pencircle scaled .5cm ;

filldraw unitsquare xscaled 8cm yscaled lcm withcolor .62bwhite ;
path bb ; bboxmargin := Opt ; bb := bbox currentpicture ;

draw bb withpen pencircle scaled 1pt withcolor .625red ;

The resulting graphic has the bounding box of the fill. Note how the path, because it is stroked
with a .5cm pen, extends beyond the border of the bounding box. The way this image shows up
depends on the viewer (settings) you use to render the graphic. For example, in GHOSTVIEW, if you
disable clipping to the bounding box, only the positive quadrant of the graphic is shown. Further,
if you enable clipping to the bounding box, this image will look exactly like the previous image
created with the fill command. In many cases, it may be best to avoid the filldraw command.

From the previous examples, you can deduce that the following alternative results in a proper
bounding box:

Bounding boxes

pickup pencircle scaled .5cm ;

path p ; p := unitsquare xscaled 8cm yscaled 1lcm ;

£fill p withcolor .625white ;

draw p withcolor .62bwhite ;

path bb ; bboxmargin := Opt ; bb := bbox currentpicture ;
draw bb withpen pencircle scaled 1pt withcolor .62bred ;

The CONTXT distribution comes with a set of METAPOST modules, one of which contains the
drawfill macro, which provides the outer bounding box. We will demonstrate its use in another,
more complicated example.

picture finalpicture ; finalpicture := nullpicture ;
numeric n ; n := 0 ; bboxmargin := Opt ;
pickup pencircle scaled .5cm ;

def shape =
unitsquare scaled 2cm withcolor .625white ;
draw bbox currentpicture
withpen pencircle scaled .b5mm withcolor .62bred ;
addto finalpicture also currentpicture shifted(n*3cm,0) ;
currentpicture := nullpicture ; n := n+l
enddef ;

I

fill shape ; draw shape ; filldraw shape ; drawfill shape ;

currentpicture := finalpicture ;

Here we introduce a macro definition, shape. In MeTAPOsT, the start of a macro definition is
indicated with the keyword def. Thereafter, you can insert other variables and commands, even
other macro definitions. The keyword enddef signals the end of the macro definition. The result
is shown in figure 2.1; watch the bounding boxes. Close reading of the macro will reveal that
the £il11, draw, filldraw and drawfill macros are applied to the first unitsquare path in the
macro.

Figure 2.1 A fill, draw, filldraw and
drawfill applied to the same square.

In this macro, bbox calls a macro that returns the enlarged bounding box of a path. By setting
bboxmargin we can influence how much the bounding box is enlarged. Since this is an existing

m Bounding boxes

65

variable, we don't have to allocate it, like we do with numeric n. Unless you take special
precautions, variables are global by nature and persistent outside macros.

picture finalpicture ; finalpicture := nullpicture ;

Just as numeric allocates an integer variable, the picture primitive allocates a picture data struc-
ture. We explicitly have to set this picture to nothing using the built-in primitive nullpicture.

Later on, we will add the drawn paths as accumulated in currentpicture to this
finalpicture in the following manner.

addto finalpicture also currentpicture shifted(n*3cm,0) ;

Since we want to add a few more and don’t want them to overlap, we shift them. Therefore we
have to erase the current picture as well as increment the shift counter.

currentpicture := nullpicture ; n := n+l ;

The drawfill macro is one of the MetaFun macros. Another handy macro is boundingbox.
When used instead of bbox, you don’t have to set the margin to zero.

Figure 2.2 The influence of pens on £ill.

There is a subtle point in filling a shape. In figure 2.2 you see the influence of the pen ona £ill
operation. An indirect specification has no influence, and results in a filled rectangle with sharp
corners. The third rectangle is drawn with a direct pen specification which results in a larger
shape with rounds corners. However, the bounding box is the same in all three cases. The graphic
is defined as follows. This time we don’t use a (complicated) macro.

drawoptions (withcolor .625white) ;

path p ; p := unitsquare scaled 2cm ;

fill p shifted (3cm,0) ;

pickup pencircle scaled .5cm ; fill p shifted (6cm,0) ;
fill p shifted (9cm,0) withpen pencircle scaled .5cm ;

When a graphic is constructed, its components end up in an internal data structure in a more or
less layered way. This means that as long as a graphic is not flushed, you may consider it to be a
stack of paths and texts with the paths being drawn or filled shapes or acting as clipping paths or
bounding boxes.

When you ask for the dimensions of a graphic the lower left and upper right corner are
calculated using this stack. Because you can explicitly set bounding boxes, you can lie about the
dimensions of a graphic. This is a very useful feature. In the rare case that you want to know
the truth and nothing but the truth, you can tweak the truecorners numeric variable. We will
demonstrate this with a few examples.

£ill fullcircle scaled 1lcm withcolor .625yellow ;

Bounding boxes A'few more details

2.3

r Y
A4

£ill fullcircle scaled lcm withcolor .62b5yellow ;
setbounds currentpicture to boundingbox currentpicture enlarged 2mm ;

£ill fullcircle scaled lcm withcolor .625yellow ;
setbounds currentpicture to boundingbox currentpicture enlarged 2mm ;
interim truecorners := 1 ;

r Y
-

£ill fullcircle scaled 1cm withcolor .625yellow ;

interim truecorners := 1 ;
setbounds currentpicture to boundingbox currentpicture enlarged 2mm ;
truecorners := 0 ;

As you can see here, as soon as we set truecorners to 1, the bounding box settings are ignored.

Units

Like TgX, METAPOST supports multiple units of length. In TgX, these units are hard coded and
handled by the parser, where the internal unit of length is the scaled point (sp), something on
the nanometer range. Because METRPOST is focused on POSTSCRIPT output, its internal unit is the
big point (bp). All other units are derived from this unit and available as numeric instead of hard
coded.

mm
cm

2.83464 ; pt
28.34645 ; pc

0.99626 ; dd
11.95517 ; cc

1.06601 ; bp := 1 ;
12.79213 ; in := 72 ;

Careful reading reveals that only the bp and in are fixed, while the rest of the dimensions are
scalar multiples of bp.

Since we are dealing with graphics, the most commonly used dimensions are pt, bp, mm, cm
and in.

AR AL

27pt bp 25.4mm 2.54cm lin

A dh dh 4N 4N 4

[] .
>tai Qi Units

The text in the center of the leftmost graphic is typeset by METAPOST as a label.

£ill fullsquare scaled 72.27pt withcolor .62byellow ;
£ill fullcircle scaled 72.27pt withcolor white ;
label("72.27pt", center currentpicture) ;

In MeTAPOST the following lines are identical:

draw fullcircle scaled 100 ;
draw fullcircle scaled 100bp ;

You might be tempted to omit the unit, but this can be confusing, particularly if you also program
in a language like METAFONT, where the pt is the base unit. This means that a circle scaled to 100
in METAPOST is not the same as a circle scaled to 100 in MeTAFONT. Consider the next definition:

pickup pencircle scaled O ;
fill unitsquare

xscaled 400pt yscaled -.5cm withcolor .625red ;
fill unitsquare

xscaled 400bp yscaled +.5cm withcolor .625yellow ;
drawoptions(withcolor white) ;
label.rt("400 pt", origin shifted (0, -.25cm)) ;
label.rt("400 bp", origin shifted (0, +.25cm)) ;

When processed, the difference between a pt and bp shows rather well. Watch how we use .rt
to move the label to the right; you can compare this with Tgx’s macro \rlap. You might want to
experiment with .1ft, .top, .bot, .ulft, .urt, .11ft and .1rt.

The difference between both bars is exactly 1.5pt (as calculated by Tgx).

400 bp
400 pt

Where TiX is anchored in tradition, and therefore more or less uses the pt as the default unit, MeTA-
PosT, much like POSTSCRIPT, has its roots in the computer sciences. There, to simplify calculations,
an inch is divided in 72 big points, and .72pt is sacrificed.

When you consider that POSTSCRIPT is a high end graphic programming language, you may
wonder why this sacrifice was made. Although the difference between 1bp and 1pt is miniscule,
this difference is the source of much (unknown) confusion. When TgX users talk about a 10pt font,
a desktop publisher hears 10bp. In a similar vein, when we define a papersize having a width of
600pt and a height of 450pt, which is papersize S6 in CONTEXT, a POSTSCRIPT or PDF viewer will
report slightly smaller values as page dimensions. This is because those programs claim the pt
to be a bp. [This confusion can lead to interesting discussions with desktop publishers when they
have to use TgX. They often think that their demand of a baseline distance of 13. 4 is met when we
set it to 13.4pt, while actually they were thinking of 13. 4bp, which of course in other programs
is specified using a pt suffix.]

Therefore, when embedding graphics in CONTEXT, we strongly recommend that you use pt as
the base unit instead. The main reason why we spend so many words on this issue is that, when
neglected, large graphics may look inaccurate. Actually, when taken care of, it is one of the (many)
reasons why TgX documents always look so accurate. Given that the eye is sensitive to distortions

Units A

of far less than 1pt, you can be puzzled by the fact that many drawing programs only provide a

bounding box in rounded units. Thereby, they round to the next position, to prevent unwanted

cropping. For some reason this low resolution has made it into the high end POSTSCRIPT standard.
In CONTEXT we try to deal with these issues as well as possible.

Scaling and shifting

When we draw a shape, MeTAPOST will adapt the bounding box accordingly. This means that a
graphic has its natural dimensions, unless of course we adapt the bounding box manually. When
you limit your graphic to a simple shape, say a rectangle, shifting it to some place can get obscured
by this fact. Therefore, the following series of shapes appear to be the same.

unitsquare xscaled 6cm yscaled 1.5cm
withpen pencircle scaled 2mm withcolor .625red ;

H

unitsquare shifted (.5,.5) xscaled 6cm yscaled 1.5cm
withpen pencircle scaled 2mm withcolor .62b5red ;

H

unitsquare shifted (-.5,-.5) xscaled 6cm yscaled 1.5cm
withpen pencircle scaled 2mm withcolor .62bred ;

H

unitsquare xscaled 6cm yscaled 1.5cm shifted (lcm,lcm)
withpen pencircle scaled 2mm withcolor .625red ;

H

24
draw
draw
draw
draw
ew mo

>tails Scaling and shifting

draw
unitsquare xscaled 6cm yscaled 1.5cm shifted (1.5cm,1lcm)
withpen pencircle scaled 2mm withcolor .625red ;

However, when we combine such graphics into one, we will see in what respect the scaling and
shifting actually takes place.

draw
unitsquare xscaled 6cm yscaled 2cm
withpen pencircle scaled 3.0mm withcolor .625yellow ;
draw
unitsquare shifted (.5,.5) xscaled 6cm yscaled 2cm
withpen pencircle scaled 3.0mm withcolor .625red ;
draw
unitsquare xscaled 6cm yscaled 2cm shifted (lcm,lcm)
withpen pencircle scaled 3.0mm withcolor .625white ;
draw
unitsquare xscaled 6cm yscaled 2cm shifted (1.5cm,1cm)
withpen pencircle scaled 1.5mm withcolor white ;
draw
unitsquare shifted (-.5,-.5) xscaled 6cm yscaled 2cm
withpen pencircle scaled 1mm withcolor black ;
draw origin withpen pencircle scaled 1mm ;

As you can see, the transformations are applied in series. Sometimes this is not what we want,
in which case we can use parentheses to force the desired behaviour. The lesson learned is that
scaling and shifting is not always the same as shifting and scaling.

draw
origin -- origin shifted ((4cm,Ocm) shifted (4cm,Ocm))
withpen pencircle scaled lcm withcolor .625white ;
draw
origin -- origin shifted (4cm,Ocm) shifted (4cm,Ocm)
withpen pencircle scaled 8mm withcolor .625yellow ;

Scaling and shifting ﬁe

draw
(origin -- origin shifted (4cm,Ocm)) shifted (4cm,Ocm)
withpen pencircle scaled 6mm withcolor .625red ;

draw
origin -- (origin shifted (4cm,Ocm) shifted (4cm,Ocm))
withpen pencircle scaled 4mm withcolor white ;

c—

Especially when a path results from a call to a macro, using parentheses around a path may help,
as in the following example.

def unitslant = origin -- origin shifted (1,1) enddef ;
draw

unitslant xscaled b5cm yscaled 1lcm

withpen pencircle scaled lcm withcolor .625red ;
draw

(unitslant) xscaled 5cm yscaled lcm

withpen pencircle scaled 5mm withcolor .625yellow ;

=

The next definition of unitslant is therefore better.

def unitslant = (origin -- origin shifted (1,1)) enddef ;
draw

unitslant xscaled b5cm yscaled lcm

withpen pencircle scaled 5mm withcolor .62bred ;

—

An even better alternative is:

path unitslant ; unitslant = origin -- origin shifted (1,1) ;
draw

unitslant xscaled b5cm yscaled lcm

withpen pencircle scaled 5mm withcolor .625yellow ;

\

Scaling and shifting

2.5

Curve construction

Chapter 3 of the METAFONT book explains the mathematics behind the construction of curves. Both
METAFONT and METAPOST implement Bézier curves. The fact that these curves are named after Pierre
Bézier obscures the fact that the math behind them originates with Sergei Bernshtein.

The points on the curve are determined by the following formula:

z(t) = (1 = £)%z1 + 3(1 — 1)%tzp + 3(1 — 223 + 24

Here, the parameter f runs from [0, 1]. As you can see, we are dealing with four points. In practice
this means that when we construct a curve from multiple points, we act on two points and the two
control points in between. So, the segment that goes from z; to z4 is calculated using these two
points and the points that METARFONT/METAPOST calls post control point and pre control point.

Z1 Zy

z7

Z4

Z6

J

Z5
The previous curve is constructed from the three points z1, z4 and z;. The curve is drawn in
METAPOST by z1..z4. .27 and is made up out of two segments. The first segment is determined
by the following points:

point z; of the curve

the postcontrol point z, of z;
the precontrol point z3 of z4
point z4 of the curve

L Y.

On the next pages we will see how the whole curve is constructed from these quadruples of points.
The process comes down to connecting the mid points of the straight lines to the points mentioned.
We do this three times, which is why these curves are classified as third order approximations.

The first series of graphics demonstrates the process of determining the mid points. The third
order midpoint is positioned on the final curve. The second series focuses on the results: new
sets of four points that will be used in a next stage. The last series only shows the third order
midpoints. As you can see, after some six iterations we have already reached a rather good fit of
the final curve. The exact number of iterations depends on the resolution needed. You will notice
that the construction speed (density) differs per segment.

The path in these examples is defined as follows:

N0

Curve construction qe

points

—
first order curve

—
second order curve

—
third order curve

—d
left side curves

-

9
right side curves

Curve construction

points

)

first order points

°
second order points

left side points

Curve construction

right side points

)
[]
° Q °
first iteration second iteration
° ® 0 n
[) [) N
[) [)
L
[
[]
[
[)
[)
[[]
[]
[]
° ™Y °
[] Y []
®, ° [] e ¢ o © <
third iteration fourth iteration
.... o
...
()
....
[]
[]
]
(]
° H
g H
\ §
o. ..°
[] [)
[)
Q []
..

fifth iteration

sixths iteration

Curve construction

path p ; p

:= (4cm,4cm)..(6cm,0cm)..(1lcm,2cm)

’

If you are playing with graphics like this, the MetaFun macro randomize may come in handy:

If we apply this operation a couple of times we can see how the control points vary. (Using the
randomizer saves us the troubles of finding nice example values.) The angle between the tangent

as well as the distance form the parent point determine the curve.

///

N

2

/

5

Just in case you are interested in how such graphical simulations can be organized, we show
(In the previous examples we mimimized the
complexity of the code by using buffers, but describing this mechanism is out of the scope of this

simplified versions of the macros used here.

section.)

We need to loop over all segments of a curve, where for each segment the left and right side
sub curves are handled recursively, upto the requested depth (denoted as n). For this we define
the following macros.

vardef dodrawmidpoints (expr a, b, ¢, d, n)
save e, £, g, h, i, j

e := .5[a,b]
h := .5[e,f]
draw j ;

if n>1

5lf,gl 5 j

dodrawmidpoints(a, e, h, j, n-1)
dodrawmidpoints(j, i, g, d, n-1)

fi ;
enddef ;

vardef drawmidpoints (expr p, n) =
save a, b, ¢, d ; pair a, b, c, d ;

for x=0 upto length(p)-1

a := point x
d := point x+1 of p ; ¢

of p ; b := postcontrol x
:= precontrol

dodrawmidpoints(a, b, ¢, d, n) ;

endfor ;
enddef ;

We apply this macro to a simple shape:

; pair e, £, g, h, i, j ;
.5[b,c] ; g :

3

’

of p ;

x+1 of p ;

drawmidpoints (fullcircle xscaled 300pt yscaled 50pt, 1) ;

When drawn, this results in the points that makes up the curve:

Curve construction

7
5

10

We now add an extra iteration (resulting in the yellow points):

drawmidpoints (fullcircle xscaled 300pt yscaled 50pt, 2) ;

and get:
o © ¢ ¢ ° o
° °
°° ®e
o, . . °®
[J Y ° ° Y [J

We don't even need that much iterations to get a good result. The depth needed to get a good result
depends on the size of the pen and the resolution of the device on which the curve is visualzied.

for i=1 upto 7
drawmidpoints (fullcircle
xscaled (300pt+i*10pt) yscaled (50pt+i*10pt), i) ;
endfor ;

Here we show 7 iterations in one graphic.

eescccccce ooooooo....,:':"::m

e« o o o o o L A A S e

. . . . o e S teeey

. . * . ° e 0
. .

.

.
. o 2o
. .
.

In practice it is not that trivial to determine the depth needed. The next example demonstrates
how the resolution of the result depends on the length and nature of the segment.

drawmidpoints (fullsquare
xscaled 300pt yscaled 50pt randomized (20pt,10pt), 5) ;

® ® ® o o o o o o o o o 6 o o o o o o 6 o 6 o 0 0 o o o o o o

.

10

>tails Curve construction

2.6

Inflection, tension and curl

The MeTAPOST manual describes the meaning of . . . as “choose an inflection—free path between
these points unless the endpoint directions make this impossible”. To use the words of David
Arnold: a point of inflection is where a path switches concavity, from concave up to concave down,
for example.

It is surprisingly difficult to find nice examples that demonstrate the difference between . .
and ..., as it is often ‘impossible’ to honour the request for less inflection. We will demonstrate
this with a few graphics.

In the four figures on the next pages, you will see that . . . is not really suited for taming wild
curves. If you really want to make sure that a curve stays within certain bounds, you have to
specify it as such using control or intermediate points. In the figures that follow, the gray curves
draw the random path using . . on top of yellow curves that use the . .. connection. As you can
see, in only a few occasions do the yellow ‘inflection’ free curves show up.

For those who asked for the code that produces these pictures, we now include it here. We
use a macro sample which we define as a usable graphic (nearly all examples in this manual are
coded in the document source).

\startuseMPgraphic{sample}
def sample (expr rx, ry) =
path p, q ; numeric n, m, r, a, b ;
color c ; c¢ := \MPcolor{lightgray} ;
a :=3mm ; b :=2mm ; r :=2cm ; n :=7 ; m :=5 ;
q := unitsquare scaled r xyscaled (n,m) shifted (.5r,.5r) ;
draw q withpen pencircle scaled (b/4) withcolor .625yellow;
for i=1 upto n : for j=1 upto m :
p := (fullcircle scaled r randomized (r/rx,r/ry))
shifted ((i,j) scaled r) ;
pickup pencircle scaled a ;
draw for k=0 upto length(p)

point k of p .. endfor cycle withcolor c ;
draw for k=0 upto length(p)
point k of p ... endfor cycle withcolor c ;

pickup pencircle scaled b ;
draw for k=0 upto length(p)

point k of p .. endfor cycle withcolor .625yellow ;
draw for k=0 upto length(p)
point k of p ... endfor cycle withcolor .62bwhite ;

for k=0 upto length(p)
draw point k of p withcolor .625red ;
endfor ;
endfor ; endfor ;
setbounds currentpicture to q ;
enddef ;
\stopuseMPgraphic

As you see, not so much code is needed. The graphics themselves were produced with a couple
of commands like:

>t

Inflection, tension and curl ﬁe

\placefigure
{Circles with minimized inflection and 25\} randomized points.}
{\startMPcode
\includeMPgraphic{sample} ; sample(4,4) ;
\stopMPcode}

The tension specifier can be used to influence the curvature. To quote the METAPOST manual once
more: “The tension parameter can be less than one, but it must be at least 3/4”. The following
paths are the same:

zl .. z2
z1l .. tension 1 .. z2
zl .. tension 1 and 1 .. z2
The triple dot command . . . is actually a macro that makes the following commands equivalent.

Both commands will draw identical paths.

zl ... z2
zl .. tension atleast 1 .. z2

The atleast directive tells METAPOST to do some magic behind the screens. Both the 3/4 and the
atleast lead directly to the question: “What, exactly, is the influence of the tension directive?” We
will try to demystify tension specifier through a sequence of graphics.

u := 1lcm ; z1 = (0,0) ; z2 = (2u,4u) ; z3 = (4u,0) ;
def sample (expr p, c) =
draw p withpen pencircle scaled 2.5mm withcolor white ;
draw p withpen pencircle scaled 2.0mm withcolor c ;
enddef ;
for i=.75 step .05 until 1
sample (zl1 .. temsion i .. z2 .. z3, .625red) ;
endfor ;
for i=1 step .05 until 2 :
sample (zl .. temsion i .. z2 .. z3, .62byellow) ;

endfor ;
sample (z1 .. z2 .. z3, .625white) ;
sample (zl1 ... z2 ... 23, .62bwhite) ;

Indeed values less than .75 give an error message, but large values are okay. As you can see, the
two gray curves are the same. Here, atleast 1 means 1, even if larger values are useful.

10

>tails Inflection, tension and curl

We mentioned control points. We will now draw a few extreme tensions and show the control
points as METAPOST calculates them.

sample (zl1 .. temnsion 0.75 .. z2 .. z3, .62bred) ;
sample (z1 .. temnsion 2.00 .. z2 .. z3, .625yellow) ;
sample (z1 .. z2 .. z3, .62bwhite) ;

First we will show the symmetrical tensions.

The asymetrical tensions are less prominent. We use the following values:

sample (z1 .. tension .75 and 10 .. z2 .. z3, .625red) ;
sample (z1 .. tension 10 and .75 .. z2 .. z3, .62byellow) ;
sample (z1 .. z2 .. z3, .625white) ;

What happens when you use the METAPOST maximum value of infinity instead of 10? Playing
with this kind of graphic can be fun, especially when we apply a few tricks.

Inflection, tension and curl

def sample (expr p, c) =
draw p withpen pencircle scaled 2.5mm withcolor white ;
draw p withpen pencircle scaled 2.0mm withcolor c ;
enddef;

u := 1lcm ; z1 = (0,0) ; z2 = (2u,4u) ; z3 = (4u,0) ;

for i=0 step .05 until 1 :
sample(zl .. temsion (.75+i) .. z2 .. 23, i[.625red, .625yellow]) ;
endfor;

Here we change the color along with the tension. This clearly demonstrates that we're dealing
with a non linear phenomena.

We can (misuse) transparant colors to illustrate how the effect becomes less with growing tension.

def sample (expr p, c)=
draw p withpen pencircle scaled 2.0mm withcolor c ;
enddef;

u := 1lcm ; z1 = (0,0) ; z2 = (2u,4u) ; z3 = (4u,0) ;

for i=0 step .05 until 1 :
sample(zl .. temsion (.75+i) .. z2 .. z3, transparent(l,1-i,.625red)) ;
endfor;

Inflection, tension and curl %

A third magic directive is curl. The curl is attached to a point between { 7, like {curl 2}.
Anything between curly braces is a direction specifier, so instead of a curl you may specify a
vector, like {(2,3)}, a pair of numbers, as in {2,3}, or a direction, like {dir 30}. Because
vectors and angles are straightforward, we will focus a bit on curl.

z0 ..zl .. z2
z0 {curl 1} .. z1 .. {curl 1} z2

So, a curl of 1is the default. When set to 1, the begin and/or end points are approached. Given
the following definitions:

u := 1cm ; z1 = (0,0) ; z2 = (2u,4u) ; z3 = (4u,0) ;
def sample (expr p, c) =
draw p withpen pencircle scaled 2.5mm withcolor white ;
draw p withpen pencircle scaled 2.0mm withcolor c ;
enddef ;

We can draw three curved paths.

sample (z1 {curl 0} .. z2 .. {curl 0} z3, .625red) ;
sample (z1 {curl 2} .. z2 .. {curl 2} z3, .625yellow) ;
sample (z1 {curl 1} .. z2 .. {curl 1} z3, .625white) ;

The third (gray) curve is the default situation, so we could have left the curl specifier out of the
expression.

The curly specs have a lower bound of zero and no upper bound. When we use METAPOST maximum
value of infinity instead of 2, we get:

Inflection, tension and curl

2.7

These curves were defined as:

sample (z1 {curl 0} .. z2 .. {curl 0} z3, .625red) ;
sample (z1 {curl infinity} .. z2 .. {curl infinity} z3, .625yellow) ;
sample (z1 {curl 1} .. z2 .. {curl 1} z3, .625white) ;

It may sound strange, but internally METARPOST can handle larger values than infinity.

sample (z1 {curl infinity} .. z2 .. {curl infinity} z3, .625red) ;
sample (z1 {curl 4infinity} .. z2 .. {curl 4infinity} 23, .625yellow) ;
sample (z1 {curl 8infinity} .. z2 .. {curl 8infinity} z3, .625white) ;

Although this is quite certainly undefined behaviour, interesting effects can be achieved. When
you turn off METAPOSTs first stage overflow catcher by setting warningcheck to zero, you can go
upto 8 times infinity, which, being some 2!5, is still far from what today’s infinity is supposed
to be.

()

As the built-in METAPOST command . . accepts curl and tension directive as described in this
section, you will now probably understand the following plain MeTAPOST definitions:

def -- = {curl 1} .. {curl 1} enddef ;
def --- = .. tension infinity .. enddef ;
def = .. tension atleast 1 .. enddef ;

These definitions also point out why you cannot add directives to the left or right side of --, -—-
and . . .: they are directives themselves!

Transformations

A transform is a vector that is used in what is called an affine transformation. To quote the
METAPOST manual:

“If p = (px, py) is a pair and T is a transform, then p transform T is a pair of the form:

(tx + taapx + teypy, ty + tyapx + tyypy)

Transformations ﬁemn?c

where the six numeric quantities (ty, ty, tx, txy, tyx, tyy) determine T.”

In literature concerning POSTSCRIPT and PDF you will find many references to such transformation
matrices. A matrix of (sy, 0,0, sy, 0, 0) is scaling by s, in the horizontal direction and s, in the vertical
direction, while (1,0, t,, 1,0, t,) is a shift over t,, t,. Of course combinations are also possible.

Although these descriptions seem in conflict with each other in the nature and order of
the transform components in the vectors, the concepts are the same. You normally populate
transformation matrices using scaled, shifted, rotated.

transform t ; t := identity shifted (a,b) rotated c scaled d ;
path p ; p := fullcircle transformed t ;

The previous lines of code are equivalent to:
path p ; p := fullcircle shifted (a,b) rotated c scaled d ;

You always need a starting point, in this case the identity matrix identity: (0,0,1,0,0,1). By the
way, in POSTSCRIPT the zero vector is (1,0, 0,1,0,0). So, unless you want to extract the components
using xpart, xypart, xxpart, ypart, yxpart and/or yypart, you may as well forget about the
internal representation.

You can invert a transformation using the inverse macro, which is defined as follows, using
an equation:

vardef inverse primary T =
transform T_ ; T_ transformed T = identity ; T
enddef ;

Using transform matrices makes sense when similar transformations need to be applied on many
paths, pictures, pens, or other transforms. However, in most cases you will use the predefined
commands scaled, shifted, rotated and alike. We will now demonstrate the most common
transformations in a text example.

draw btex \bfd MetaFun etex ;
draw boundingbox currentpicture withcolor .62byellow ;

Before a METAPOST run, the btex ... etex’s are filtered from the file and passed on to TgX.
After that, the DVI file is converted to a list of pictures, which is consulted by meTAPOST. We can
manipulate these pictures like any graphic as well as draw it with draw.

We show the transformations in relation to the origin and make the origin stand out a bit more by
painting it a bit larger in white first.

draw origin withpen pencircle scaled 1.5mm withcolor white ;
draw origin withpen pencircle scaled 1mm withcolor .625red

The origin is in the lower left corner of the picture.

MetaFun

Because the transformation keywords are proper english, we let the pictures speak for themselves.

10

>tails Transformations

currentpicture :

MetaFun

currentpicture :

unJepn

currentpicture :

e
%QO«

NC

currentpicture :

currentpicture

currentpicture

currentpicture

currentpicture

MetaFun

currentpicture :

unJerRn

currentpicture :

oS =k -0 SA G &k = ¥

currentpicture :

nuisisV

currentpicture :

MetaFun

currentpicture :

INGIYENMY

currentpicture :

MetaFun

Transformations

currentpicture

currentpicture

currentpicture

currentpicture

currentpicture

currentpicture

shifted (0,-1cm)

rotated 180 ;

rotatedaround(origin,30) ;

scaled 1.75 ;

scaled -1 ;

xscaled 3.50 ;

xscaled -1 ;

yscaled .5 ;
yscaled -1 ;
slanted .5 ;

’

87

A few more details

2.8

currentpicture := currentpicture slanted -.5 ;
MWiekakun
currentpicture := currentpicture zscaled (.75,.25) ;
Fos
eld
currentpicture := currentpicture

reflectedabout(llcorner currentpicture,urcorner currentpicture) ;

A path has a certain direction. When the turningnumber of a path is larger than zero, it runs
in clockwise direction. The METRPOST primitive reverse changes the direction, while the macro
counterclockwise can be used to get a path running in a well defined direction.

drawoptions(withpen pencircle scaled 2pt withcolor .625red) ;
path p ; p := fullcircle scaled 1lcm ;

drawarrow P
drawarrow reverse p shifted (2cm,0) ;
drawarrow counterclockwise p shifted (4cm,0) ;

drawarrow counterclockwise reverse p shifted (6cm,0) ;
drawarrow reverse counterclockwise p shifted (8cm,0) ;

CHONCHCNE,

Only this far

When you take a close look at the definitions of the Computer Modern Roman fonts, defined in
the METAFONT book, you will notice a high level of abstraction. Instead of hard coded points you
will find points defined in terms of ‘being the same as this point’ or ‘touching that point’. In this
section we will spend some time on this touchy aspect.

This rectangle is a scaled instance of the predefined MetaFun path fullsquare which is centered
around the origin.

>tails Only this far

pickup pencircle scaled 2mm ;
path p ; p := fullsquare scaled 2cm ;
draw p withcolor .625white ;

On this path, halfway between two of its corners, we define a point q:
pair q ; q := .5[llcorner p, lrcorner p]l ;

We draw this point in red, using;:
draw q withcolor .62bred ;

As you can see, this point is drawn on top of the path.

There are four of those midpoints, and when we connect them, we get:

Because path p is centered around the origin, we can simply rotate point q a few times.

draw q -— q rotated 90 -- q rotated 180 --
q rotated 270 -- cycle withcolor .625red ;

There are situations, where you don’t want the red path to be drawn inside another path, or more
general: where you want points to touch instead of being overlayed.

We can achieve this by defining point g to be located on top of the midpoint.
pair q ; q := top .5[llcorner p, lrcorner p] ;

The predefined macro top moves the point over the distance similar to the current pen width.

10

>t

Only this far ﬁe

Because we are dealing with two drawing operations, and since the path inside is drawn through
the center of points, we need to repeat this move in order to draw the red path really inside the
other one.

pair q ; q := top top .5[llcorner p, lrcormer pl ;

Operations like top and its relatives bot, 1ft and rt can be applied sequentally.

We already showed that q was defined as a series of rotations.

draw q -- q rotated 90 -- g rotated 180 --
q rotated 270 -- cycle withcolor .62bred ;

As an intermezzo we will show an alternative definition of q. Because each point is rotated 90
degrees more, we can define a macro that expands into the point and rotates afterwards. Because
each consecutive point on the path is rotated an additional 90 degrees, we use the METAPOST
macro hide to isolate the assignment. The hide command executes the hidden command and
afterwards continues as if it were never there. You must confuse this with grouping, since the
hidden commands are visible to its surroundings.

def qq = q hide(q := q rotated 90) enddef ;
draw qq -- qq -—— qq —— qq -- cycle withcolor .62bred ;

The macro top uses the characteristics of the current pen to determine the displacement. However,
for the more complicated pen shapes we need a different trick to get an inside path. Let’s start by
defining a elliptical path.

pickup pencircle xscaled 3mm yscaled 5mm rotated 30 ;
path p ; p := fullcircle xscaled 6cm yscaled 3cm ;
draw p withcolor .625white ;

We draw this path using a non standard pen. In the MeTARFONT manual you will find methods to
draw shapes with similar pens, where the pen is also turning, as it does in real calligraphy. Here
we stick to a more simple one.

N0

>tails Only this far

We construct the inner path from the points that make up the curve. Watch how we use a for loop
to compose the new path. When used this way, no semi colon may be used to end the loop, since
it would isolate the color directive.

draw point O of p
for i=1 upto length(p) : —-- point (i) of p endfor
withcolor .62bred ;

The points are still located on the original path.

We can move the points to the inside by shifting them over the penwidth in the direction perpen-
dicular to the point which is a good approximation. Because we use this transformation more
than once, we wrap it into a macro. This also keeps the code readable.

vardef inside expr pnt of p =
(point pnt of p shifted
-(penoffset direction pnt of p of currentpen))

enddef ;
draw inside O of p
for i=1 upto length(p) : -- inside i of p endfor

withcolor .625red ;

Whenever you define a pen, METAPOST stores its characteristics in some private variables which
are used in the top and alike directives. The penoffset is a built in primitive and is defined as
the “point on the pen furthest to the right of the given direction”. Deep down in METAPOST pens
are actually simple paths and therefore METAPOST has a notion of a point on the penpath. In the
METAFONT book and METAPOST manual you can find in depth discussions on pens.

We're still not there. Like in a previous example, we need to shift over twice the pen width. To
get good results, we should determine the width of the pen at that particular point, which is
not trivial. The more general solution, which permits us to specify the amount of shifting, is as
follows.

N0

Only this far ﬁe

vardef penpoint expr pnt of p =
save n, d ; numeric n, d ;
(n,d) = if pair pnt : pnt else : (pnt,1) fi ;
(point n of p shifted
((penoffset direction n of p of currentpen) scaled d))
enddef ;

When the point specification is extended with a distance, in which case we have a pair expression,
the point and distance are derived from this specification. First we demonstrate the simple case:

draw penpoint O of p
for i=1 upto length(p)-1 : .. penpoint i of p endfor .. cycle
withcolor .62bred ;

In the next graphic, we draw both an inner and and outer path.

draw penpoint (0,-2) of p
for i=1 upto length(p)-1 : .. penpoint (i,-2) of p endfor .. cycle
withcolor .625red ;

draw penpoint (0,+2) of p
for i=1 upto length(p)-1 : .. penpoint (i,+2) of p endfor .. cycle
withcolor .625yellow ;

Another case when top and friends cannot be applied in a general way is the following. Consider
the three paths:

path p, q, r ;

PETE CEEE []
 few nr leta i
WA .n. Only this far

p := fullcircle scaled 3cm ;

q := p shifted (7cm,Ocm) ;

r := center p -- center q ;
We draw these paths with:

draw p withpen pencircle scaled 10pt withcolor .625red ;
draw q withpen pencircle scaled 10pt withcolor .625yellow ;
draw r withpen pencircle scaled 20pt withcolor .625white ;

The line is drawn from center to center and since the line has a non zero width and a round line
cap, it extends beyond this point.

If we want to line to stop at the circular paths, we can cut off the pieces that extend beyond those
paths.

pair pr, qr ;

Pr := p intersectionpoint r ;
qr := q intersectionpoint r ;
r := r cutbefore pr cutafter qr ;

This time we get:

Due to the thicker line width used when drawing the straight line, part of that line is still visible
inside the circles. So, we need to clip off a bit more.’

r := r cutbefore (point 5pt on r) ;
r r cutafter (point -5pt on r) ;

The point ... on operation is a MetaFun macro that takes a dimension.

3 This problem was posted at the CONTXT mailing list by Marc van Dongen.

Only this far

In order to save you some typing, MetaFun provides a macro cutends that does the same job:
r :=r cutends 5pt ;
This time we draw the path in a different order:

draw r withpen pencircle scaled 20pt withcolor .62bwhite ;
draw p withpen pencircle scaled 10pt withcolor .625red ;
draw q withpen pencircle scaled 10pt withcolor .625yellow ;

That way we hide the still remaining overlapping part of the line.

29 Directions

Quite often you have to tell METAPOST in what direction a line should be drawn. A direction is
specified as a vector. There are four predefined vectors: up, down, left, right. These are defined
as follows:

pair up, down, left, right ;
up = -down = (0,1) ; right = -left = (1,0) ;

We can use these predefined pairs as specifications and in calculations.

dotlabel.top("up" , up * lcm) ;
dotlabel.bot("down" , down * 1cm) ;
dotlabel.lft("left" , left * 1cm) ;
dotlabel.rt ("right", right * 1lcm) ;

drawoptions (withpen pencircle scaled .25mm withcolor .625 red) ;

drawarrow origin -- up * lcm ;
drawarrow origin -- down * lcm ;
drawarrow origin -- left * 1lcm ;
drawarrow origin -- right * 1lcm ;

up

left right

down

This graphic can also be defined in a more efficient (but probably more cryptic) way. The next
definition demonstrates a few nice tricks. Instead of looping over the four directions, we loop over
their names. Inside the loop we convert these names, or strings, into a pair by scanning the string
using scantokens. The freedotlabel macro is part of MetaFun and takes three arguments: a
label string (or alternatively a picture), a point (location), and the ‘center of gravity’. The label is
positioned in the direction opposite to this center of gravity.

pair destination ;
for whereto = "up", "down", "left", "right"
destination := scantokens(whereto) * lcm ;
freedotlabel (whereto, destination, origin) ;
drawarrow origin -- destination
withpen pencircle scaled .25mm withcolor .625 red ;
endfor ;

So, in this code fragment, we use the string as string and (by means of scantokens) as a point or
vector.

up

left right

down

The previous definition is a stepping stone to the next one. This time we don’t use points, but the
dir command. This command converts an angle into an unitvector.

pair destination ;
for whereto = 0 step 30 until 330

destination := dir(whereto) * 1.5cm ;
freedotlabel(decimal whereto, destination, origin) ;
drawarrow origin -- destination
withpen pencircle scaled .25mm withcolor .625 red ;
endfor ;

In MeTAPOST the angles go counter clockwise, which is not that illogical if you look at it from the
point of view of vector algebra.

Directions ﬁm&n?c

2.10

120 % 60
150 30
180 0
210 330
240 3 300

Analyzing pictures

Unless you really want to know all details, you can safely skip this section. The METAPOST features
discussed here are mainly of importance when you write (advanced) macros.

Later we will discuss in detail how you can use either METRPOST or TgX to typeset text (section 1.15
and chapter 10), so here we limit our exploration to a quick introduction. The most direct way of
processing text in METAPOST is using the infont operator.

draw "this string will become a sequence of glyphs (MP)"
infont defaultfont scaled defaultscale ;

The text between " is passed to TgX, and the resulting DvI will be converted into a picture with
textual components. So, we get:

this string will become a sequence of glyphs (MP)
The same string typeset by TeX shows up as:
this string will become a sequence of glyphs (TgX)

The following MeTAPOST features are not covered by the MeETAPOST manual, but most of them are
discussed in the appendix of the graph package written by John Hobby.

It is possible to disassemble a picture by means of a special for loop using the within specifier.
The following code walks over a picture and draws the components with their bounding boxes.

for i within currentpicture :
draw boundingbox i withcolor .625yellow ;
endfor ;

We can use the disassemble loop feature to look into the previously shown example text.

this string will become a sequence of glyphs (MP)

The second line is typeset by TgX. The resulting DVI code is converted into a series of pictures, which
METAPOST pastes into one picture. You may also notice that in the set of pictures that originate in
TEX, the space is replaced by a shift (this is because TgX knows no space).

An interesting aspect of this ‘loop over a picture’ feature, is that it can provide insight in how
TEX is composing a paragraph.

qe 10

>tails Analyzing pictures

fin information+thick worlds because marvelous land everyday
capacity to select, ledit, structure, highlight, group, [pair, merge;,
synthesize, focus, organize, condense, reduce, boil down, categorize,
list, labstract, look into, idealize, isolate, discriminate, distinguish,
pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk,
average, approximate, cluster, aggregate, summarize, review,
into, flip through, browse, glance into, leaf through, skim, refine, enumerate, glean,
synopsize, winnow fthe wheat from the chafff land separate thel [sheep| from the goats.

You may also notice, that rules produced by TiX are converted to straight line segments. Because
the line extends 50% of its linewidth beyond a point, there is a slight overshoot. This picture was

defined in a few lines:

draw btex \framed[width=fit,align=middle]{\input tufte \relax} etex ;
for i within currentpicture :

draw boundingbox i withpen pencircle scaled .2pt withcolor .62byellow ;

endfor ;

If we use a Times Roman instead of a Palatino, we get quite different results.

inl information+thick worlds becausel lof manvelous and everyday| capacity/ to [select,
structure, merge, harmonize, synthesize, focus, organize
condense, reduce, boil down, list, abstract, scan, look into,
idealize, fisolate, ldiscriminate, distinguish, over, sort,
inspect, filter, lump; skip, smooth, chunk, average, approximate, cluster, aggregate, outline,
summarize, review, into, flip browse, glancel into, leaf through, [skim, refine,
enumerate, glean, synopsize, winnow fthe wheat from the chaff and separate thel sheep from the igoats,

In CONTEXT, you can easily change the body font for METAPOST graphics with directives like:

\startMPenvironment
\usetypescript[times] [texnansi]
\switchtobodyfont [times, 10pt]

\stopMPenvironment

This font has far less kerning. Even more interesting is the Lucida Bright Handwriting font, which

is defined in such a way that no kerning is needed at all.

We thwive in information:-thick worlds becaunse of ouwr mauwvelows ands
everyday capacity to-select; edit; single/ out; structure,
group, pair, merge; hawrmonize; synthesize; focus; organige, condense;
boil downy choose) categorige, catulog, classify, list, abstract,
scony look into; idealige, isolate; discriminate, distinguish,
pigeonhole; pick over, sovt, integrate; blend, inspect, filter, lump, skip,
smoothy chunk, awerage; approximate;
summowige; emige review, dip into; flip thwoughy browse; glance
leaf thwoughy skimy, refine; enumerate; gleany synopsize, winmow
the wheat fromythe chaff and sepowate the sheep

Analyzing pictures ﬁe

You can ask for the number of components with 1length. A component can be a stroked or filled
path, or a text resulting from an infont operation. If the (last) path is a clip path, or when the
whole picture has a forced boundingbox, the picture is treated as a whole. We will demonstrate
this later.

You may wonder if this within loop construct has any real application, and as you can expect,
it has. In section 13.4 a macro is defined that draws a colored circle. If you want the inverted
alternative, you can pass the inverted color specification, but wouldn’t it be more convenient if
there was an operator that did this for you automatically? Unfortunately there isn't one so we
have to define one ourselves a macro.

These circles were drawn using:

colorcircle(4cm,(.4,.6,.8),(.4,.8,.6),(.6,.4,.8)) ;
addto currentpicture also inverted currentpicture shifted (5cm,0) ;

When we draw a path, or stroke a path, as it is called officially, we actually perform an addition:
addto currentpicture doublepath somepath

The £111 command is actually:
addto currentpicture contour somepath

We will need both doublepath and contour operations in the definition of inverted.

When MeTAPOST has digested a path into a picture, it keeps track of some characteristics. We
can ask for them using part. . . operators. The following operators can be applied to a transform
vector (one of METRPOST’s data types), but also to a picture. Say that we have drawn a circle:

draw fullcircle
xscaled 3cm yscaled 2cm
dashed dashpattern(on 3mm off 3mm)
withpen pencircle scaled 1mm
withcolor .625red ;

picture p ; p := currentpicture ;

This circle looks like:

- T oy

Analyzing pictures

We can now ask for some of the characteristics of currentpicture, like its color. We could write
the values to the log file, but it is more convenient to put them on paper.

label.rt("redpart: " & decimal redpart p, (4cm,+.5cm)) ;
label.rt("greenpart: " & decimal greenpart p, (4cm, Ocm)) ;
label.rt("bluepart: " & decimal bluepart p, (4cm,-.5cm)) ;

Here the & glues strings together, while the decimal operator converts a number into a string.
The result has no typographic beauty —keep in mind that here we use METRPOST to typeset the
text—but the result serves its purpose.

o = oy

4 N redpart: 0.625
/ ‘ greenpart: 0
\ V4 bluepart: 0

~ - o -

We can also ask for the path itself (pathpart), the pen (penpart) and the dashpattern (dashpart),
but these can only be assigned to variables of the corresponding type.

A path can be stroked or filled, in which case it is a cyclic path. It can have a non natural
bounding box, be a clip path, consist of line segments or contain text. All these characteristics can
be tested.

label.rt("filled: " & condition filled p, (4cm,+1.25cm)) ;
label.rt("stroked: " & condition stroked p, (4cm,+0.75cm)) ;
label.rt("textual: " & condition textual p, (4cm,+0.25cm)) ;
label.rt("clipped: " & condition clipped p, (4cm,-0.25cm)) ;
label.rt("bounded: " & condition bounded p, (4cm,-0.75cm)) ;
label.rt("cycle: " & condition cycle pathpart p, (4cm,-1.25cm)) ;

filled: false

P4 \ stroked: true
{ \ textual: false
\ y clipped: false

S o - bounded: false

cycle: true

In this code snippet, condition is a macro that takes care of translating a boolean value into a
string (like decimal does with a numeric value).

def condition primary b =
if b : "true" else : "false" fi
enddef ;

Clip paths and bounding boxes are kind of special in the sense that they can obscure components.
The following examples demonstrate this. In case of a clip path or bounding box, the pathpart
operator returns this path. In any case that asking for a value does not make sense —a clipping
path for instance has no color— a zero (null) value is returned.

10

Analyzing pictures ﬂF

draw fullcircle withpen pencircle scaled 3mm ;
clip currentpicture to fullcircle ;
setbounds currentpicture to fullcircle ;

=}

:1 / length: 1 / stroked: false / clipped: true / bounded: false

draw fullcircle withpen pencircle scaled 3mm ;
setbounds currentpicture to fullcircle ;
clip currentpicture to fullcircle ;

=}

:1/ length: 1 / stroked: false / clipped: false / bounded: true

clip currentpicture to fullcircle ;
draw fullcircle withpen pencircle scaled 3mm ;
setbounds currentpicture to fullcircle ;

O
: 1/ length: 0 / stroked: false / clipped: true / bounded: false

:2 / length: 1 / stroked: true / clipped: false / bounded: false

s B

clip currentpicture to fullcircle ;
setbounds currentpicture to fullcircle ;
draw fullcircle withpen pencircle scaled 3mm ;

O
:1 / length: 1 / stroked: false / clipped: false / bounded: true

:2 / length: 1 / stroked: true / clipped: false / bounded: false

s B

setbounds currentpicture to fullcircle ;
clip currentpicture to fullcircle ;
draw fullcircle withpen pencircle scaled 3mm ;

O
:1 / length: 1 / stroked: false / clipped: true / bounded: false

:2 / length: 1 / stroked: true / clipped: false / bounded: false

5 B

setbounds currentpicture to fullcircle ;
draw fullcircle withpen pencircle scaled 3mm ;
clip currentpicture to fullcircle ;

=}

:1/ length: 0 / stroked: false / clipped: false / bounded: true
:2 / length: 1 / stroked: true / clipped: false / bounded: false

=}

The description lines were generated by the following loop:

n :=0 ;
for i within currentpicture : n :=n + 1 ;
label("n: " & decimal n&"/"&

ew niore details Analyzing pictures

"length: " & decimal length i & " / " &
"stroked: " & condition stroked i & " / " &
"clipped: " & condition clipped i & " / " &
"bounded: " & condition bounded i , (0,-n*.5cm)) ;

endfor ;
If we have a textual picture, we can also ask for the text and font. Take the following picture:

picture p ;

p := "MetaFun" infont defaultfont scaled 2 rotated 30 slanted .5 ;
p := p shifted (0,-ypart center p) ;

currentpicture :=p ;

Here we can ask for:

label.rt("textpart: " & textpart p, (4cm,+0.25cm)) ;
label.rt("fontpart: " & fontpart p, (4cm,-0.25cm)) ;

and get:

Fﬂﬂ textpart: MetaFun
Meta fontpart: texnansi-uplr8a

If we're dealing with a path, the transformations have ended up in the path specification. If we
have a text picture, we can explicitly ask for the transform components.

label.rt("xpart: " & decimal xpart p, (4cm,+1.25cm)) ;
label.rt("ypart: " & decimal ypart p, (4cm,+0.75cm)) ;
label.rt("xxpart: " & decimal xxpart p, (4cm,+0.25cm)) ;
label.rt("xypart: " & decimal xypart p, (4cm,-0.25cm)) ;
label.rt("yxpart: " & decimal yxpart p, (4cm,-0.75cm)) ;
label.rt("yypart: " & decimal yypart p, (4cm,-1.25cm)) ;

xpart: 0
ypart: -25.7136

n .
tzlf ! xxpart: 2.23206

e xypart: -0.13397
M yxpart: 1
yypart: 1.73206

We will now define the inverted macro using these primitives. Because we have to return a
picture, we cannot use draw and £i11 but need to use the low level operators. Because a picture
can consist of more than one path, we need a temporary picture pp.

vardef inverted expr p =
save pp ; picture pp ; pp := nullpicture ;
for i within p :
addto pp

N0

Analyzing pictures qe

if stroked i or filled i
if filled i : contour else : doublepath fi pathpart i
dashed dashpart i withpen penpart i

else
also i

fi

withcolor white-(redpart i, greenpart i, bluepart i) ;

endfor ;

pp
enddef ;

We probably need to handle a few more border cases, but for general purposes, this macro works
as expected.

From the previous examples it may be clear that each picture has some associated data stored
with it. From the bounded boolean test we can deduce that the bounding box is part of this data
Internally MeTAPOST keeps track of two bounding boxes: the natural one, and the forced one. The
forced one is actually a component of the picture which applies to all previously added graphics.
You can calculate the bounding box from the 11corner and urcorner or if you like ulcorner
and 1lrcorner and the MetaFun command boundingbox does so.

The four corners that make up the bounding box are either the natural ones, or the ones forced
by setbounds. You can force METRPOST to report the natural ones by setting truecorners to 1.
The next example demonstrates this feature.

pickup pencircle scaled 2mm ; path p, q ;
draw fullcircle
scaled 4cm slanted .5 withcolor .625white ;
setbounds currentpicture to
boundingbox currentpicture enlarged -5mm ;
interim truecorners := 0 ; p := boundingbox currentpicture ;
interim truecorners := 1 ; q := boundingbox currentpicture ;
pickup pencircle scaled 1mm ;
draw p withcolor .62bred ;
draw q withcolor .625yellow ;

We use interim because truecorners is an internal METAPOST variable.

Since METAPOST can handle fonts (it can even generate font metric files) it is no surprise that we
can also ask for the natural size of a font. For this we use fontsize. However, you should beware

10

Stails Analyzing pictures

2.11

of the fact that the size reported is in base points. Since this is METAPOST’s native unit, this is no
problem in calculations, but it may look confusing when you show this size on your terminal and
get less that 10 reported for a cmr10 font.

show fontsize "cmr10" ;

In order to demonstrate that fontsize is useful, we extend the infont command. In the process
we show a few macro definition tricks. What we want is a Tpx like specification of a font size:

draw "MetaFun" infont defaultfont at 20pt ;
We can store the current meaning of a primitive or macro in a new macro. We do so with infont:
let normalinfont = infont ;

We can only know the size if we know the name of the font, so we have to redefine infont to pick
up this name.

def infont primary name =
hide(lastfontsize := fontsize name)
normalinfont name

enddef ;

Because we are replacing an operator, and since METRPOST expects one, we have to use def instead
of vardef (which is actually a kind of variable). For the same reason, we have to pick up a
primary. If we would use a expr name, we would end up in an unwanted look ahead. The hide
macro hides the assignment and makes this macro behave like a vardef with respect to hiding
expressions. We may not put a semi colon after the) because it would stop METAPOST from reading
on, and thereby invoke an error message.

We can now define at. This macro picks up an expression (which can be more than just a
number) and return a scale transform that normalizes the given size to the design size.

def at expr size =
scaled (size/lastfontsize)
enddef ;

Because this macro is defined global, and therefore can be used apart from infont, we predefine
the size:

numeric lastfontsize ; lastfontsize = fontsize defaultfont ;

When defined this way at a comfortable 20 points, the string MetaFun comes out as follows:

MetaFun

Pitfalls

When writing macros, you need to be careful in what operations apply to what object. There is
for instance a difference between the following code:

10

Pitfalls Qe

pickup pencircle scaled 2pt ;
draw (0,0)--(0,1)--(1,1) scaled 1cm withcolor .625 red ;
draw ((0,0)--(0,1)--(1,1)) scaled 2cm withcolor .625 yellow ;

The scaled operates on the previous expression which in the first case is the point (1,1) and in
the second case the whole path.

pickup pencircle scaled 2pt ;
draw (0,0)--(0,1)--(1,1)--cycle scaled lcm withcolor .625 red ;
draw ((0,0)--(0,1)--(1,1)--cycle) scaled 2cm withcolor .625 yellow ;

Here the last element in the first case is not the cycle, and the next alternative does not help us
much in discovering what is going on. (Well, at least something is going on, because the result
seems to have some dimensions.)

pickup pencircle scaled 2pt ;
draw (1,1)--cycle scaled 1lcm withcolor .625 red ;
draw ((1,1)--cycle) scaled lcm withcolor .625 yellow ;

The next lines demonstrate that we’re dealing with the dark sides of MeTAPOST, and from that we
may conclude that in case of doubt it’s best to add parenthesis when such fuzzy situations threaten
to occur.

pickup pencircle scaled 2pt ;
draw (0,1)--(1,1)--cycle scaled 1lcm withcolor .625 red ;
draw ((0,1)--(1,1)--cycle) scaled lcm withcolor .625 yellow ;

N0

>tails Pitfalls

There are more cases where the result may surprise you. Take the following code:

drawarrow ((0,0)--(10,0))

withpen pencircle scaled 2pt

withcolor red randomized (.4,.9) ;
currentpicture := currentpicture scaled 8 ;

The arrow is made up out of two pieces and each piece gets a different shade of red. This is because
the attributes are collected and applied to each of the components that make up the arrow. Because
for each component the attribute code is expanded again, we get two random colors. One way
around this is to apply the color afterwards.

draw
image (drawarrow ((0,0)--(10,0)) withpen pencircle scaled 2pt)
scaled 8 withcolor red randomized (.4,.9) ;

Here the image macro creates a picture and as you can see, this provides a way to draw within a
draw operation.

Once you see the benefits of image, you will use it frequently. Another handy (at first sight
strange) macro is hide. You can use this in situations where you don’t want code to interfere.

def mydraw text t =

boolean error ; error := false ;
def withpencil expr p = hide (error := true) enddef ;
draw t ;

if error : message "pencils are not supported here" fi ;
enddef ;
mydraw fullcircle scaled 10cm withpencil sharp ;

Here, setting the boolean normally interferes with the draw operation, but by hiding the as-
signment, this code becomes valid. This code will bring the message to your terminal and log
file.

Once you start using expressions you have a good chance of encountering messages with
regards to redundant expressions. The following code is for instance a recipe for problems:

zl = (1,0) ; z1 = (2,0) ;

Changing the = into := helps, but this may not be what you want.
Because the z-variables are used frequently, they are reset each figure. You can also reset
them yourself, using the clearxy macro. The MetaFun version clears all z—variables, unless you

Pitfalls ﬂe

2.12

explictly specify what variables to reset.* If you want to play with this macro, see what happens
when you run the following code:

show x0 ; z0 = (10,10) ;

show x0 ; x0 := whatever ; yO := whatever ;
show x0 ; z0 = (20,20) ;

show x0 ; clearxy O ;

show x0 ; z0 = (30,30) ;

So, the following calls are all legal:
clearxy ; clearxy 1 ; clearxy 1, 8, 10 ;

Keep in mind that for each figure a full clear is done anyway. You should not confuse this command
with clearit, which clears currentpicture.

TEX versus METAPOST

If you are defining your own Tgx and METAPOST macros, you will notice that there are a couple of
essential differences between the two macro languages. In Tgx the following code is invalid.’

\def\fancyplied#1/
{\ifnum#1=0
\message{zero argumentl,

\fi
\countO=#1 \multiply \countO by \countO
\count2=#1 \multiply \count2 by 2
\count4=#1 \divide \count4 by 2
\advance \countO by \count2
\advance \countO by \count4
\count4 }

\hskip \fancyplied{3} pt

This is because TgX is very strict in what tokens it expects next. In METARPOST however, you can use
vardef’d macros to hide nasty intermediate calculations.

vardef fancyplied expr x =

if x=0 : message "x is zero" ; (x*x+2x+x/2)
enddef ;
a := a shifted (fancyplied 3pt,0) ;

Hiding intermediate calculations and manipulations is a very strong point of METAPOST.

Another important difference between both languages is the way grouping is implemented.
Because TgX is dealing with a flow of information, strong grouping is a must and therefore part of
the language. Occasionally you run into situations where you wished that you could reach over a
group (for instance in order to pass a value).

% This version resulted from a discussion on the MeTRFONT discussion list and is due to Bogustaw Jackowski.
5 In e-px the calculation can be done in less lines using a \numexpr.

>tdils TeX versus METAPOST

qe 10

107

In MeTAPOST grouping behaves quite different. First of all, it provides the mechanism that
hides processing from the current flow. The previously mentioned vardef is implicitly grouped.
Contrary to TzX, in METAPOST all assignments are global by default, even in a group. If you assign a
variable inside a group it is persistent unless you first save the variable (or macro) using the save
operator.

So, in the next code snippet, the value of \value inside the box is no but after the box is typeset,
it will be yes again.

\def\value{yes} \hbox{\def\value{no}\value} \value
To make a value local in METARPOST, the following code is needed.

string value ; value := "yes" ;
def intermezzo
begingroup ;
save value ; string value ; value := "no" ;
endgroup ;
enddef ;

Once you start writing your own METAPOST macros, you will appreciate this ‘always global’ be-
haviour. As with other differences between the two languages, they make sense if you look at
what the programs are supposed to do.

2.13 Internals and Interims

Related to grouping is the internal numeric datatype. When numeric variables are defined as
interim, you can quickly overload them inside a group.

newinternal mynumber ; mynumber := 1 ;

begingroup ; ... interim mynumber := 0 ; ... ; endgroup ;

You can only interim a variable if it is already defined using newinternal.

Among the METAPOST macros is one called drawdot. This macro is kind of redundant because,
at least at first sight, you can use draw to achieve the same result. There is however a very subtle
difference: a dot is slightly larger than a drawn point. We guess that it’s about the device pixel, so
you may not even notice it. It may even be due to differences in accuracy of the methods to render
them.

pickup pencircle scaled 50pt ;

drawdot origin shifted (-120pt,0) ; draw origin shifted (-60pt,0) ;
drawdot origin ; draw origin withcolor white ;

setbounds currentpicture to boundingbox currentpicture enlarged 1pt ;

Internals and Interims Al few more details

Internals and Interims

Embedded graphics

3.1

In addition to the beginfig-endfig method, there are other ways to define and include a META-
PosT graphic. Each method has its advantages and disadvantages.

In the previous chapter we were still assuming that the graphic was defined in its own file. In
this chapter we will introduce the interface between CONTEXT and METAPOST and demonstrate how
the definitions of the graphics can be embedded in the document source.

Getting started

From now on, we will assume that you have CONTEXT running on your platform. Since PDF has
full graphics support, we also assume that you use PDFIgX, or know how to go from DVI to PDF.
Since this document is not meant as a CONTEXT tutorial, we will limit this introduction to the basics
needed to run the examples.

A simple document looks like:

\starttext
Some text.
\stoptext

You can process this document with the PERL based command line interface to CONTEXT. If the
source code is embedded in the file mytext . tex, you can say:

texexec --pdf mytext
As an alternative to —-pdf, you can explicitly set the output driver in your document:

\setupoutput [pdftex]
\starttext

Some text and/or graphics.
\stoptext

Yet another alternative is:

% interface=english output=pdftex
\starttext

Some text and/or graphics.
\stoptext

Here the interface directive tells TEXEXEC that it should force the english user interface.
We will use color, and since traditionally TgX is rather unaware of color, this feature is turned
off by default, so, if you want to see color, you should type:

\setupcolors[state=start]
\starttext

Some \color[blue]l{text} and/or \color[green]{graphics}.
\stoptext

As an alternative, you can run TeXEXEC like:

Getting started nbe

CS

3.2

texexec ——pdf --color mytext

In later chapters we will occasionally see some more CONTEXT commands show up. If you want
to know more about what CONTEXT can do for you, we recommend the beginners manual and the
reference manual, as well as the manual that comes with TgXEXEC.

External graphics

Since TiX has no graphic capabilities built in, a graphic is referred to as an external figure. A
METAPOST graphic often has a number as suffix, so embedding such a graphic is done by:

\externalfigure [graphic.123] [width=4cm]

An alternative method is to separate the definition from the inclusion. An example of a definition
is:

\useexternalfigure [pentastar] [star.803] [height=4cm]
\useexternalfigure[octostar] [star.804] [pentastar]

Here, the second definition inherits the characteristics from the first one. These graphics can be
summoned like:

\placefigure
{A fivel|point star drawn by \METAPOST.}
{\externalfigure[pentastar]}

Here the stars are defined as stand-alone graphics, in a file called star.mp. Such a file can look
like:

def star (expr size, n, pos) =
for a=0 step 360/n until round(360*(1-1/n))
draw (origin -- (size/2,0))
rotatedaround (origin,a) shifted pos ;
endfor ;
enddef ;

beginfig(803) ;
pickup pencircle scaled 2mm ; star(2cm,5,origin) ;
endfig ;

beginfig(804) ;
pickup pencircle scaled 1mm ; star(lcm,8,origin) ;
pickup pencircle scaled 2mm ; star(2cm,7,(3cm,0)) ;
endfig ;

end.

This star macro will produce graphics like:

X % % Xk ¥ K

raphics External graphics

3.3

Integrated graphics

An integrated graphic is defined in the document source or in a style definition file. The most
primitive way of doing this is beginning with the definition of the graphic.

\startMPgraphic
£ill fullcircle scaled 200pt withcolor .625white ;
\stopMPgraphic

Next the graphic can be loaded, using:
\loadcurrentMPgraphic{optional setups}

Finally, the graphic is placed in the document with:
\placeMPgraphic

The optional setups are passed on to the figure inclusion macro, which in CONTEXT is the command
\externalfigure.

Since every definition replaces the previous one, this method forces you to embed the defini-
tions in the running text. In this document we also generate graphics while we finish a page, so
there is a good change that when we have constructed a graphic which will be called on the next
page, the wrong graphic is placed.

Therefore you may as well forget these commands, since there are more convenient ways of
defining and using graphics, which have the added advantage that you can predefine multiple
graphics, thereby separating the definitions from the usage.

The first alternative is a usable graphic. Such a graphic is calculated anew each time it is used.
An example of a usable graphic is:

\startuseMPgraphic{name}
£ill fullcircle scaled 200pt withcolor .625yellow ;
\stopuseMPgraphic

When you put this definition in the preamble of your document, you can place this graphic
anywhere in the file, saying:

\useMPgraphic{name}

As said, this graphic is calculated each time it is placed, which can be time consuming. Apart from
the time aspect, this also means that the graphic itself is incorporated many times. Therefore, for
graphics that don’t change, CONTEXT provides reusable graphics:

\startreusableMPgraphic{name}
£ill fullcircle scaled 200pt withcolor .625yellow;
\stopreusableMPgraphic

This definition is accompanied by:
\reuseMPgraphic{name}

Imagine that we use a graphic as a background for a button. We can create a unique and reusable
graphic by saying:

CS

Integrated graphics nbe

D

\def\MyGraphic
{\startreusableMPgraphic{name:\overlaywidth:\overlayheight}
path p ; p := unitsquare
xscaled \overlaywidth yscaled \overlayheight ;
£ill p withcolor .625yellow ;
draw p withcolor .62bred ;
\stopreusableMPgraphic
\reuseMPgraphic{name:\overlaywidth:\overlayheight}}

After this we can say:

\defineoverlay[my graphic] [\MyGraphic]
\button[background=my graphic,frame=off]{Go Home} [firstpage]

Say that we have a 30pt by 20pt button, then the identifier will be name: 30pt : 20pt. Different
dimensions will lead to other identifiers, so this sort of makes the graphics unique.

We can bypass the ugly looking \def by using a third class of embedded graphics, the unique
graphics.

\startuniqueMPgraphic{name}
path p ; p := unitsquare
xscaled \overlaywidth yscaled \overlayheight ;
£fill p withcolor .625yellow ;
draw p withcolor .62bred ;
\stopuniqueMPgraphic

Now we can say:

\defineoverlay[my graphic] [\uniqueMPgraphic{name}]
\button[background=my graphic,frame=off]{Go Home} [firstpage]

You may wonder why unique graphics are needed when a single graphic might be used multiple
times by scaling it to fit the situation. Since a unique graphic is calculated for each distinctive case,
we can be sure that the current circumstances are taken into account. Also, scaling would result
in incomparable graphics. Consider the following definition:

\startMPgraphic
draw unitsquare
xscaled 5cm yscaled lcm
withpen pencircle scaled 2mm
withcolor .62bred ;
\stopMPgraphic

Since we reuse the graphic, the dimensions are sort of fixed, and because the graphic is calculated
once, scaling it will result in incompatible line widths.

I | S

These graphics were placed with:

aF) cs Integrated graphics

\hbox \bgroup
\loadcurrentMPgraphic{width=5cm,height=1cm}\placeMPgraphic \quad
\loadcurrentMPgraphic{width=8cm,height=1cm}\placeMPgraphic \egroup

Imagine what happens when we add some buttons to an interactive document without taking
care of this side effect. All the frames would look different. Consider the following example.

\startuniqueMPgraphic{right or wrong}
pickup pencircle scaled .075 ;
fill unitsquare withcolor .8white ;
draw unitsquare withcolor .625red ;
currentpicture := currentpicture
xscaled \overlaywidth yscaled \overlayheight ;
\stopuniqueMPgraphic

Let’s define this graphic as a background to some buttons.

\defineoverlay [button] [\uniqueMPgraphic{right or wrong}]
\setupbuttons [background=button,frame=off]

\hbox
{\button {previous} [previouspage] \quad
\button {next} [nextpage] \quad
\button {index} [index]\quad

\button {table of contents} [content]}

The buttons will look like:

previous| |next| [index Itable of contentsl

Compare these with:

Iprevious I Inextl Iindex I table of contentsl

Here the graphic was defined as:

\startuniqueMPgraphic{wrong or right}
pickup pencircle scaled 3pt ;
path p ; p := unitsquare
xscaled \overlaywidth yscaled \overlayheight ;
fill p withcolor .8white ;
draw p withcolor .62bred ;
\stopuniqueMPgraphic

The last class of embedded graphics are the runtime graphics. When a company logo is defined
in a separate file mylogos .mp, you can run this file by saying:

\startMPrun
input mylogos ;
\stopMPrun

Integrated graphics : #

The source for the logo is stored in a file named mylogos . mp.

beginfig(21) ;
draw fullsquare withcolor .625red ;
draw fullsquare rotated 45 withcolor .62bred ;
picture cp ; cp := currentpicture ;

def copy = addto currentpicture also cp enddef ;
copy scaled .9 withcolor .625white ;
copy scaled .7 withcolor .62byellow ;
copy scaled .6 withcolor .625white ;
copy scaled .4 withcolor .62bred ;
copy scaled .3 withcolor .625white ;
£i1l fullcircle scaled .2 withcolor .62byellow ;
currentpicture := currentpicture scaled 50 ;
endfig ;
end .

In this example the result is available in the file mprun. 21. This file can be included in the normal
way, using;:

\externalfile [mprun.21] [width=5cm]

Figure 3.1 The logo is defined in the file
mylogos.mp as figure 21 and processed
by means of the mprun method.

3.4 Graphic buffers

In addition to the macros defined in the previous section, you can use CONTXT’s buffers to handle
graphics. This can be handy when making documentation, so it makes sense to spend a few words
on them.

A bulffer is a container for content that is to be (re)used later on. The main reason for their
existence is that they were needed for typesetting manuals and articles on TgX. By putting the code
snippets in buffers, we don’t have to key in the code twice, since we can either show the code of

Graphic buffers

buffers verbatim, or process the code as part of the text flow. This means that the risk of mismatch
between the code shown and the typeset text is minimized.

\startbuffer
You are reading the \METAFUN\ manual.
\stopbuffer

This buffer can be typeset verbatim using \typebuffer and processed using \getbuffer, as we
will do now:

An other advantage of using buffers, is that they help you keeping the document source clean. In
many places in this manual we put table or figure definitions in a buffer and pass the buffer to
another command, like:

\placefigure{A very big table}{\getbuffer}

Sometimes it makes sense to collect buffers in separate files. In that case we give them names.
This time we should say \typebuffer [mfun] to typeset the code verbatim. Instead of TgX
code, we can put METAPOST definitions in buffers.
Buffers can be used to stepwise build graphics. By putting code in multiple buffers, you can
selectively process this code.

\startbuffer [red]
drawoptions(withcolor .625red) ;
\stopbuffer

\startbuffer[yellow]
drawoptions(withcolor .625yellow) ;
\stopbuffer

We can now include the same graphic in two colors by simply using different buffers. This time we
use the special command \processMPbuffer, since \getbuffer will typeset the code fragment,
which is not what we want.

\startlinecorrection[blank]
\processMPbuffer[red,graphic]
\stoplinecorrection

The line correction macros take care of proper spacing around the graphic. The [blank] directive
tells CONTEXT to add more space before and after the graphic.

\startlinecorrection[blank]
\processMPbuffer[yellow,graphic]
\stoplinecorrection

Which mechanism you use, (multiple) buffers or (re)usable graphics, depends on your preferences.
Buffers are slower but don’t take memory, while (re)usable graphics are stored in memory which
means that they are accessed faster.

CS

Graphic buffers mbe

3.5

Communicating color

Now that color has moved to the desktop, even simple documents have become more colorful, so
we need a way to consistently apply color to text as well as graphics. In CONTEXT, colors are called
by name.

The next definitions demonstrate that we can define a color using different color models, RGB
or CMYK. Depending on the configuration, CONTEXT will convert one color system to the other, RGB
to CMYK, or vice versa. The full repertoire of color components that can be set is as follows.

\definecolor[color one] [r=.1, g=.2, b=.3]
\definecolor[color two] [c=.4, m=.5, y=.6, k=.7]
\definecolor[color three] [s=.8]

The numbers are limited to the range 0...1 and represent percentages. Black is represented by:

\definecolor[black 1] [r=0, g=0, b=0]
\definecolor[black 2] [c=0, m=0, y=0, k=1]
\definecolor[black 3] [s=0]

Predefined colors are passed to METAPOST graphics via the \MPcolor. First we define some colors.

\definecolor [darkyellow] [y=.625] % a CMYK color
\definecolor [darkred] [r=.625] % a RGB color
\definecolor[darkgray] [s=.625] % a gray scale

These are the colors we used in this document. The next example uses two of them.

\startuseMPgraphic{color demo}
pickup pencircle scaled 1mm ;
path p ; p := fullcircle xscaled 10cm yscaled 1lcm ;
fill p withcolor \MPcolor{darkgrayl} ;
draw p withcolor \MPcolor{darkred} ;
\stopuseMPgraphic

\useMPgraphic{color demo}

The previous example uses a pure RGB red shade, combined with a gray fill.

< >

Since METAPOST does not support the CMYK color space and native gray scales —although gray
colors are reduced to the more efficient POSTSCRIPT setgray operators in the output— the macro
\MPcolor takes care of the translation from CMYK to RGB as well as gray to RGB. However, there is
a fundamental difference between a yellow as defined in CONTEXT using CMYK and a RGB yellow in
METAPOST.

\definecolor [cmyyellow] [y=1]
\definecolor [rgbyellow] [r=1,g=1]
raphics Communicating color

D

\definecolor [cmydarkyellow] [y=.625]
\definecolor[rgbdarkyellow] [r=.625,g=.625]

Figure 3.2 demonstrates what happens when we multiply colors by a factor. Since we are not
dealing with real CMYK colors, multiplication gives different results for CMYK colors passed as

\MPcolor.
-
yellow (1,1,0) (.5,.5,0)
BN
\MPcolor{rgbyellow} \MPcolor{rgbdarkyellow} .5\MPcolor{rgbyellow}
-
\MPcolor{cmyyellow} \MPcolor{cmydarkyellow} .5\MPcolor{cmyyellow}

Figure 3.2 All kinds of yellow.

So, .625red is the same as [r=.5], but .625yellow is not the same as [y=.5], but matches
[r=.5,g=.5]. Figure 3.3 shows the pure and half reds.

(1,0,0) (.625,0,0)
\MPcolor{red} \MPcolor{darkred} .625\MPcolor{red}

Figure 3.3 Some kinds of red.

In order to prevent problems, we advise you to stick to RGB color specifications when possible.
That way you not only prevent conversion problems, but also get more predicatable results on
printing and viewing devices. However, reality demands that sometimes CMYK colors are used,
so how can we deal with that?

In the MetaFun macro collection there is a macro cmyk that takes four arguments, representing
the cyan, magenta, yellow, and black component.

fill fullsquare xyscaled (10cm,lcm) withcolor cmyk(1,0,.3,.3) ;

Communicating color 8 1@

If you take a close look at the numbers, you will notice that the cyan component results in a 100%
ink contribution. You will also notice that 30% black ink is added. This means that we cannot
safely convert this color to RGB (r = 1 — ¢ — k < 0) without losing information. Nevertheless the
previous blue bar is presented all right. This is due to the fact that in MetaFun the CMYK colors are
handled as they should, even when METAPOST does not support this color model.

If you use this feature independent of CONTEXT, you need to enable it by setting cmykcolors
to true. You have to convert the resulting graphic to PDF by using for instance the mptopdf suite
(see appendix A).

In CONTEXT you can influence this conversion by changing parameters related to color handling:

\setupcolors[cmyk=yes,mpcmyk=no]

Unless you know what you are doing, you don’t have to change the default settings (both yes). In
the CONTEXT reference manual you can also read how color reduction can be handled.

Special care should be paid to gray scales. Combining equal quantities of the three color inks
will not lead to a gray scale, but to a muddy brown shade.

f£ill fullsquare xyscaled (10cm, 2cm) withcolor .5white ;
f£ill fullsquare xyscaled (6cm,1.5cm) withcolor cmyk(.5,.5,.5,0) ;
fill fullsquare xyscaled (2cm, 1cm) withcolor cmyk(0,0,0,.5) ;

In figure 3.4 to 3.6 you can see some more colors defined in the CMYK color space. When you
display the screen version of this document, you will notice that the way colors are displayed can
differ per viewer. This is typical for CMYK colors and has to do with the fact that some assumptions
are made with respect to the (print) medium.

c=1y=3k=3 c=9 y=.15 c=25y=38 c=45y=1

Figure 3.4 CMYK support disabled, conversion to RGB.

c=1y=3k=3 =9 y=.15 =25 y=.8 =45 y=.1

Figure 3.5 CMYK support enabled, no support in METAPOST.

c=1y=3k=3 c=9y=.15 =25 y=.8 c=45y=1

Figure 3.6 CMYK support enabled, no conversion to RGB, support in METAPOST

WW Communicating color

3.6 Common definitions
When using many graphics, there is a chance that they share common definitions. Such shared
components can be defined by:

\startMPinclusions

color mycolor ; mycolor := .62bred ;

\stopMPinclusions
All MeTAPOsT graphics defined in the document end up in the files mpgraph.mp and mprun.mp.
When processed, they produce (sometimes many) graphic files. When using TzXEXEC to process
documents, these two files are processed automatically after a run so that in a next run, the right
graphics are available.

When you are using the web2c distribution, CONTEXT can call METAPOST at runtime and thereby
use the right graphics instantaneously. In order to use this feature, you have to enable \write18
in the file texmf .cnf. Also, in the file cont-sys.tex, that holds local preferences, or in the
document source, you should say:

\runMPgraphicstrue
This enables runtime generation of graphics using the low level TiX command \write18. First
make sure that your local brand of TgX supports this feature. A simple test is making a TiX file with
the following line:

\immediate\writel8{echo It works}

If this fails, you should consult the manual that comes with your system, locate an expert or
ask around on the CONTEXT mailing list. Of course you can also decide to let TEXEXEC take care of
processing the graphics afterwards. This has the advantage of being faster but has the disadvantage
that you need additional TgX runs.

If you generate the graphics at run time, you should consider to turn on graphic slot recycling,
which means that you often end up with fewer intermediate files:

\recycleMPslotstrue
There are a few more low level switches and features, but these go beyond the purpose of this
manual. Some of these features, like the option to add tokens to \everyMPgraphic are for experts
only, and fooling around with them can interfere with existing features.

3.7 One page graphics

Although all of what is demonstrated in this document is done in CONTEXT, some of the features
discussed here can also be done in plain TX. In the MetaFun distribution there is a file called
plainfun.tex, which loads the appropriate CONTEXT modules.

Many low level macros are rather generic, and can be used in plain TgX without problems.
However, the big advantage of using CONTEXT is, that graphics can be part of the text flow and that
you can put them on layers. If you don’t want this, and only want to make stand alone graphics,
you may still consider using CONTEXT for that purpose.

Common definitions nbe

3.8

Another advantage is that when using CONTEXT you don’t have to bother about specials, font
inclusion and all those nasty things that can spoil a good day. An example of such a graphic is the
file mfun-888 that resides on the computer of the author.

% output=pdftex

\setupcolors
[state=start]

\setupMPpage
[offset=1pt,
background=color,
backgroundcolor=gray]

\definecolor [gray] [s=.625]
\definecolor [red] [r=.625]
\definecolor [yellow] [r=.625,g=.625]

\startuseMPgraphic{test}
fill fullsquare rotated 45 scaled 4cm withcolor \MPcolor{yellow} ;
\stopuseMPgraphic

\starttext

\startMPpage

\includeMPgraphic{test}

£fill fullcircle scaled 3cm withcolor \MPcolor{red} ;
\stopMPpage

\stoptext

Given that the CONTEXT english interface format is present on your system, you can process this
file with TEXEXEC, for instance using PDFTpX. The ——once directive saves some runtime.

texexec --once --pdf mfun-888

You can define many graphics in one file. The TXEXEC manual describes how to selectively process
pages. If you use PDFIEX, you can include individual pages from PDF files:

\placefigure
{A silly figure, demonstrating that stand||alonel |graphics
can be made.}
{\externalfigure [mfun-888] [page=1]}

In this case the page=1 specification is not really needed. You can scale and manipulate the figure
in any way supported by the macro package that you use.

Managing resources

A graphic consists of curves, either or not filled with a given color. A graphic can also include
text, which means that fonts are used. Finally a graphic can have special effects, like a shaded fill.

raphics Managing resources

Figure 3.7 A silly figure, demonstrating
that stand—-alone—graphics can be made.

Colors, fonts and special effects go under the name resources, since they may demand special care
or support from the viewing or printing device.

When fonts are used, a MeTAPOST file is not self contained. This means that the postprocessing
program has to deal with the fonts. In CONTEXT, the special driver —and PDFTX support is
considered as such— takes care of this.

Special effects, like shading, are supported by dedicated MeTAPosT modules. These are included
in the CONTEXT distribution and will be discussed later in chapter 8.

Since METAPOST supports color, an embedded graphic can be rather colorful. However, when
color support is disabled or set up to convert colors to gray scales, CONTEXT will convert the colors
in the graphics to gray scales.

You may wonder what the advantage is of weighted gray conversion. Figure 3.8 shows the
difference between natural colors, weighted gray scaled and straightforward, non-weighted, gray

000

full color weighted gray linear gray

Figure 3.8 The advantage of weighted gray over linear gray.

When we convert color to gray, we use the following formula. This kind of conversion also takes
place in black and white televisions.

G = .30r +.59g + .11b

Section 8.5 introduces the grayed operation that you can use to convert a colored picture into a
gray one. This macro uses the same conversion method as mentioned here.

Managing resources

Managing resources

Enhancing the layout

4.1

One of the most powerful and flexible commands of CONTEXT is \framed. We can use the back-
ground features of this command to invoke and position graphics that adapt themselves to the
current situation. Once understood, overlays will become a natural part of the CONTEXT users
toolkit.

Overlays

Many CONTEXT commands support overlays. The term overlay is a bit confusing, since such an
overlay in most cases will lay under the text. However, because there can be many layers on top of
each other, the term suits its purpose.

When we want to put a METAPOST graphic under some text, we go through a three step process.
First we define the graphic itself:

\startuniqueMPgraphic{demo circle}
path p ;
p := fullcircle xscaled \overlaywidth yscaled \overlayheight ;
fill p withcolor .8b5white ;
draw p withpen pencircle scaled 2pt withcolor .625bred ;
\stopuniqueMPgraphic

This graphic will adapt itself to the width and height of the overlay. Both \overlaywidth and
\overlayheight are macros that return a dimension followed by a space. The next step is to
register this graphic as an overlay.

\defineoverlay[demo circle] [\uniqueMPgraphic{demo circle}]

We can now use this overlay in any command that provides the \framed functionality. Since this
graphic is defined as unique, CONTEXT will try to reuse already calculated and embedded graphics
when possible.

\framed [background=demo circle]{This text is overlayed.}

The background can be set to color, screen, an overlay identifier, like demo circle, oracomma
separated list of those.

@xt is ove@

The \framed command automatically draws a ruled box, which can be quite useful when debug-
ging a graphic. However, in this case we want to turn the frame off.

\framed
[background=demo circle,frame=o0ff]
{This text is overlayed.}

Chis text is overlayed

Overlays nhan 1F1

In this case, it would have made sense to either set the offset to a larger value, or to set
backgroundoffset. In the latter case, the ellipse is positioned outside the frame.

The difference between the three offsets offset, frameoffset and backgroundoffset is
demonstrated in figure 4.1. While the offset is added to the (natural or specified) dimensions of
the content of the box, the other two are applied to the frame and background and don’t add to
the dimensions.

In the first row we only set the offset, while in the second row, the (text) offset is set to 3pt.
When not specified, the of fset has a comfortable default value of . 25ex (some 25% of the height
of an x).

\setupframed
[width=.3\textwidth,
background=demo circle]

\startcombination [3*3]

{\framed [offset=none] {\Tex}} {\tt offset=none}

{\framed [offset=overlay] {\Tex}} {\tt offset=overlay}
{\framed[offset=0pt] {\TeXx}} {\tt offset=0Opt}
{\framed[offset=1pt] {\Tex}} {\tt offset=1pt}
{\framed[offset=2pt] {\TeXx}} {\tt offset=2pt}
{\framed[offset=4pt] {\Tex}} {\tt offset=4pt}
{\framed[offset=3pt] {\Tex}} {\tt offset=3pt}
{\framed[frameoffset=3pt] {\Tex}} {\tt frameoffset=3pt}
{\framed[backgroundoffset=3pt] {\TeX}} {\tt backgroundoffset=3pt}

\stopcombination

= TEX = = B — TX >

offset=none offset=overlay offset=0pt
—_ e) <

offset=1pt offset=2pt offset=4pt
S — T

offset=3pt frameoffset=3pt backgroundoffset=3pt

Figure 4.1 The three offsets.

As the first row in figure 4.1 demonstrates, instead of a value, one can pass a keyword. The
overlay keyword implies that there is no offset at all and that the lines cover the content. With
none the frame is drawn tight around the content. When the offset is set to Opt or more, the text is
automatically set to at least the height of a line. You can turn this feature of by saying strut=off.
More details can be found in the CONTEXT manual.

In figure 4.2 we have set offset to 3pt, frameoffset to 6pt and backgroundoffset to 9pt.
Both the frame and background offset are sort of imaginary, since they don’t contribute to the size
of the box.

nhanci

aq

ellayo Overlays

\ruledhbox
{\framed
[offset=3pt,frameoffset=6pt,backgroundoffset=9pt,
background=screen,backgroundscreen=.85]
{Welcome in the hall of frame!l}}

Welcome in the hall of frame!

Figure 4.2 The three offsets.

42 Overlay variables

The communication between TgX and embedded MeTAPOST graphics takes place by means of some

macros.

overlay status macro meaning

\overlaywidth the width of the graphic, as calculated from the actual width and back-
ground offset

\overlayheight the height of the graphic, as calculated from the actual height, depth and
background offset

\overlaydepth the depth of the graphic, if available

\overlaycolor the background color, if given

\overlaylinecolor the color of the frame

\overlaylinewidth the width of the frame

The dimensions of the overlay are determined by dimensions of the background, which normally is

thenatural size of a \framed. When abackground offset is specified, itisadded to overlayheight

and overlaywidth.

Colors can be converted by \MPcolor and in addition to the macros mentioned, you can use
all macros that expand into a dimension or dimen register prefixed by the TeX primitive \the (this
and other primitives are explained in “The TgXbook”, by Donald Knuth).

4.3 Stacking overlays

Abackground can be a gray scale (screen), a color (color), a previously defined overlay identifier,
or any combination of these. The next assignments are therefore legal:

\framed [background=color,backgroundcolor=red]{...}

\framed [background=screen,backgroundscreen=.8]{...}

\framed [background=circle]{...}

\framed [background={color, cow},backgroundcolor=red]{...}
\framed [background={color,cow,grid},backgroundcolor=red]{...}

In the last three cases of course you have to define circle, cow and grid as overlay. These items
are packed in a comma separated list, which is to be surrounded by {}.

Overlay variables nhan 1F1

aQ

The overlay system is actually a system of layers. Sometimes we are confronted with a situation
in which we want the text behind another layer. This can be achieved by explicitly placing the
foreground layer, as in figure 4.3.

e — e —
(lone, two, three, . ..]) (one, two, three, .. .|)
S 2 N ’

frame on top layer frame on
bottom layer

Figure 4.3 Foreground
material moved backwards.

The graphic layer is defined as follows:

\startuniqueMPgraphic{backfore}
draw fullcircle
xscaled \overlaywidth yscaled \overlayheight
withpen pencircle scaled 2pt
withcolor .625yellow ;
\stopuniqueMPgraphic

\defineoverlay[backfore] [\uniqueMPgraphic{backfore}]

The two framed texts have a slightly different definition. The leftmost graphic is defined as:

[background=backfore,backgroundoffset=4pt]
{one, two, three, \unknown}

The rightmost graphic is specified as:

[background={foreground,backfore},backgroundoffset=4pt]
{one, two, three, \unknown}

The current values of the frame color and frame width are passed to the overlay. It often makes
more sense to use colors defined at the document level, if only to force consistency.

\startuniqueMPgraphic{super ellipse}
path p ; p := unitsquare
xscaled \overlaywidth yscaled \overlayheight
superellipsed .85 ;
pickup pencircle scaled \overlaylinewidth ;
fill p withcolor \MPcolor{\overlaycolor} ;
draw p withcolor \MPcolor{\overlaylinecolor} ;
\stopuniqueMPgraphic

\defineoverlay[super ellipsel] [\uniqueMPgraphic{super ellipse}]

This background demonstrates that a super ellipse is rather well suited as frame.

44 Foregrounds
\framed
\framed
1aNncl

ellayo Foregrounds

4.5

\framed
[background=super ellipse,
frame=off,
width=3cm,
align=middle,
framecolor=darkyellow,
rulethickness=2pt,
backgroundcolor=darkgray]
{\white This is a\\Super Ellipsed\\sentence.}

Such a super ellipse looks quite nice and is a good candidate for backgrounds, for which the
superness should be at least .85.

Typesetting graphics

I have run into people who consider it kind of strange when you want to use TgX for non-
mathematical typesetting. If you agree with them, you may skip this section with your eyes
closed.

One of the CONTEXT presentation styles (number 15, tagged as balls) stepwise builds screens
full of sentences, quotes or concepts, packages in balloons and typesets them as a paragraph. We
will demonstrate that TgX can typeset graphics using the following statement.

“As you may know, TgX’s ambassador is a lion, while METRFONT is represented by a lioness.
It is still unclear if they have a relationship, but if so, and if a baby is born, may it enjoy
MetaFun.”

The low level CONTEXT macro \processwords provides a mechanism to treat the individual words
of its argument. The macro is called as follows:

\processwords{As you may know, \TEX’s ambassador is a lion,
while {\METAFONT} is represented by a lioness. It is still
unclear if they have a relationship, but if so, and if a
baby is born, may it enjoy \METAFUN.}

In order to perform a task, you should also define a macro \processword, which takes one
argument. The previous quote was typeset with the following definition in place:

\def\processword#1{#1}
A slightly more complicated definition is the following:
\def\processword#1{\noindent\framed{#1}\space}

We now get:

Typesetting graphics nhan 1an

whﬂe‘ ‘METHFONT‘ I ‘represented‘ @

but E a and l @ baby

’you‘ ’may‘ ‘know, ’TEX s‘ ‘ambassador l @ ’110r1,

|z

@ lioness.| |1t still ‘unclear if they‘ ‘have‘ @ ‘relat10nsh1p,
‘born, may‘ ’enjoy‘ ’MetaFun‘

If we can use \framed, we can also use backgrounds.

\def\processword#1Y
{\noindent\framed[frame=off,background=lions]{#1} }

We can add a supperellipsed frame using the following definition:

\startuniqueMPgraphic{lions a}
path p ; p := fullsquare
xyscaled (\overlaywidth,\overlayheight) superellipsed .85 ;
pickup pencircle scaled 1pt ;
fill p withcolor .850white ; draw p withcolor .62b5yellow ;
\stopuniqueMPgraphic

\defineoverlay[lions] [\uniqueMPgraphic{lions a}]

n@@@@w

\startuseMPgraphic{lions b}
path p ; p := fullsquare
xyscaled (\overlaywidth,\overlayheight) randomized 5pt ;
pickup pencircle scaled 1pt ;
fill p withcolor .850white ; draw p withcolor .62b5yellow ;
\stopuseMPgraphic

\defineoverlay[lions] [\uniqueMPgraphic{lions b}]

\startuniqueMPgraphic{lions c}
path p ; p := fullsquare
xyscaled (\overlaywidth,\overlayheight) squeezed 2pt ;
pickup pencircle scaled 1pt ;
fill p withcolor .850white ; draw p withcolor .62b5yellow ;
\stopuniqueMPgraphic

\defineoverlay[lions] [\uniqueMPgraphic{lions c}]

Mvo Typesetting graphics

4.6

o | oo i s 3 ¥ [
B Jines J . it e e platiosivp], i i | e
K b o] | oy, el

These paragraphs were typeset with the following settings.

E
;
i

\setupalign[broad, right] 7’ == \veryraggedright
\setupalign[broad, middle] % == \veryraggedcenter
\setupalign[broad, left] 7 == \veryraggedleft

The broad increases the raggedness. We defined three different graphics (a, b and c) because
we want some to be unique, which saves some processing. Of course we don't reuse the random
graphics. In the definition of \processword we have to use \noindent because otherwise TgX
will put each graphic on a line of its own. Watch the space at the end of the macro.

Graphics and macros

=N

Because TgX’s typographic engine and METAPOST's graphic engine are separated, interfacing be-
tween them is not as natural as you may expect. In CONTEXT we have tried to integrate them as
much as possible, but using the interface is not always as convenient as it should be. What method
you follow, depends on the problem at hand.

The official METAPOST way to embed TgX code into graphics is to use btex ... etex. Assoon
as CONTRXT writes the graphic data to the intermediate METAPOST file, it looks for these commands.
When it has encountered an etex, CONTgXT will make sure that the text that is to be typeset by Tgx
is not expanded. This is what you may expect, because when you would embed those commands
in a stand-alone graphic, they would also not be expanded, if only because METAPOST does not
know TeX. With expansion we mean that TeX commands are replaced by their meaning (which can
be quite extensive).

When METAPOST sees a btex command, it will consult a so called mpx file. This file holds the
METAPOST representation of the text typeset by TgX. Before METAPOST processes a graphic definition
file, it first calls another program that filters the bt ex commands from the source file, and generates
a TgX file from them. This file is then processed by TgX, and after that converted to a mpx file. In
CONTEXT we let TeXEXEC take care of this whole process.

Because the btex ... etex commands are filtered from the raw METAPOST source code, they
cannot be part of macro definitions and loop constructs. When used that way, only one instance
would be found, while in practice multiple instances may occur.

This drawback is overcome by MetaFun’s textext command. This command still uses btex

etex but writes these commands to a separate job related file each time it is used.® After the
first METAPOST run, this file is merged with the original file, and MeTAPOST is called again. So, at the
cost of an additional run, we can use text typeset by TiX in a more versatile way. Because METAPOST
runs are much faster than TeX runs, the price to pay in terms of run time is acceptable. Unlike btex

etex, the TiX code in textext command is expanded, but as long as CONTEXT is used this is
seldom a problem, because most commands are somewhat protected.

It took the author a while to find out that there is a METAPOST module called tex.mp that provides a similar feature, but
with the disadvantage that each text results in a call to TeX. Each text goes into a temporary file, which is then included and
results in METAPOST triggering TiX.

aq

Graphics and macros 11Panc_1rn

If we define a graphic with text to be typeset by TgX, there is a good chance that this text is not
frozen but passes as argument. A TgX-like solution for passing arbitrary content to such a graphic
is the following;:

\def\RotatedText#1#2/,
{\startuseMPgraphic{RotatedText}
draw btex #2 etex rotated #1 ;
\stopuseMPgraphic
\useMPgraphic{RotatedText}}

This macro takes two arguments (the # identifies an argument):
\RotatedText{15}{Some Rotated Text}

The text is rotated over 15 degrees about the origin in a counterclockwise direction.

X
e Ro’ta’tee‘ Tex

In CONTEXT we seldom pass settings like the angle of rotation in this manner. You can use
\setupMPvariables to set up graphic-specific variables. Such a variable can be accessed with
\MPvar.

\setupMPvariables[RotatedText] [rotation=90]

\startuseMPgraphic{RotatedText}
draw btex Some Text etex rotated \MPvar{rotation} ;
\stopuseMPgraphic

An example:

\RotatedText{-15}{Some Rotated Text}

So m
e Rota teq Text

In a similar fashion we can isolate the text. This permits us to use the same graphics with different
settings.

\setupMPvariables[RotatedText] [rotation=270]

\setMPtext{RotatedText}{Some Text}

\startuseMPgraphic{RotatedText}
draw \MPbetex{RotatedText} rotated \MPvar{rotation} ;
\stopuseMPgraphic

This works as expected:

\RotatedText{165}{Some Rotated Text}

nhanci

aq

e/layo Graphics and macros

X
or pQ,]pl Y org
0g

It is now a small step towards an encapsulating macro (we assume that you are familiar with Tpx
macro definitions).

\def\RotatedText [#1]#2Y
{\setupMPvariables[RotatedText] [#1]%
\setMPtext{RotatedText}{#2}/
\useMPgraphic{RotatedText}}

\setupMPvariables[RotatedText] [rotation=90]

\startuseMPgraphic{RotatedText}
draw \MPbetex{RotatedText} rotated \MPvar{rotation} ;
\stopuseMPgraphic

Again, we default to a 90 degrees rotation, and pass both the settings and text in an indirect way.
This method permits you to build complicated graphics and still keep macros readable.

\RotatedText [rotation=240]{Some Rotated Text}

o

o
45?
&
&
g
v

e
S

You may wonder why we don’t use the variable mechanism to pass the text. The main reason is
that the text mechanism offers a few more features, one of which is that it passes the text straight
on, without the danger of unwanted expansion of embedded macros. Using \setMPtext also
permits you to separate TgX and METAPOST code and reuse the later multiple times (imagine using
the same graphic in a section head command).

There are three ways to access a text defined with \setMPtext. Imagine that we have the
following definitions:

\setMPtext {1} {Now is this \TeX\ or not?}
\setMPtext {2} {See what happens here.}
\setMPtext {3} {Text streams become pictures.}

The \MPbetex macro returns a btex ... etex construct. The \MPstring returns the text as a
METAPOST string, between quotes. The raw text can be fetched with \MPtext.

\startMPcode
picture p ; p := \MPbetex {1} ;
picture q ; q := textext(\MPstring{2})
picture r ; r := thelabel("\MPtext {3}",origin) ;

for i=p, boundingbox p : draw i withcolor .62bred ; endfor ;
for i=q, boundingbox q : draw i withcolor .62b5yellow ; endfor ;
for i=r, boundingbox r : draw i withcolor .625white ; endfor ;

Graphics and macros nhan 1F1

aQ

currentpicture := currentpicture scaled 2 ;

draw origin withpen pencircle scaled 2.0mm withcolor white ;

draw origin withpen pencircle scaled 1.5mm withcolor black ;
\stopMPcode

The first two lines return text typeset by TgX, while the last line leaves this to METAPOST.

N _ T h | 2 T
1

Betredms havBiesHetstiEX or not?
!k’(g(:/. v\ }ldl J1\~(\)r Wl)Y 5! F |

If you watch closely, you will notice that the first (red) alternative is positioned with the baseline
on the origin.

\ 7 R K'J ab W 1 v~\ > 3 a
eawsis dhisrPporinote];

This picture demonstrates that we can also position textext’s and label’s on the baseline. For
this purpose the repertoire of positioning directives (top, 1ft, etc.) is extended with an origin
directive. Another extra positioning directive is raw. This one does not do any positioning at all.

picture q ; q := textext.origin(\MPstring{2})
thelabel.origin("\MPtext {3}",origin) ;

picture r ; r :

We will now apply this knowledge of text inclusion in graphics to a more advanced example. The
next definitions are the answer to a question on the CONTXT mailinglist with regards to framed
texts with titles.

—| Zapf (1) I
Coming back to the use of typefaces in electronic publishing: many
of the new typographers receive their knowledge and information
about the rules of typography from books, from computer magazines
or the instruction manuals which they get with the purchase of a PC
or software.

In this example, the title is positioned on top of the frame. Title and text are entered as:

\FrameTitle{Zapf (1)}

\StartFrame

Coming back to the use of typefaces in electronic
publishing: many of the new typographers receive their
knowledge and information about the rules of typography from
books, from computer magazines or the instruction manuals
which they get with the purchase of a PC or software.
\StopFrame

The implementation is not that complicated and uses the frame commands that are built in
CONTXT. Instead of letting TsX draw the frame, we use MeTAPOST, which we also use for handling
the title. The graphic is defined as follows:

e layo Graphics and macros

\startuseMPgraphic{FunnyFrame}
picture p ; numeric w, h, o ;
p := textext.rt(\MPstring{FunnyFrame}) ;
w := OverlayWidth ; h := OverlayHeight ; o := BodyFontSize ;
p := p shifted (20,h-ypart center p) ; draw p ;
drawoptions (withpen pencircle scaled 1pt withcolor .625red) ;
draw (20,h)--(0,h)--(0,0)--(w,0)--(w,h)--(xpart urcorner p,h) ;
draw boundingbox p ;
setbounds currentpicture to unitsquare xyscaled(w,h) ;
\stopuseMPgraphic

Because the framed title is partly positioned outside the main frame, and because the main frame
will be combined with the text, we need to set the boundingbox explicitly. This is a way to create
so called free figures, where part of the figure lays beyond the area that is taken into account when
positioning the graphic. The shift

. shifted (20,h-ypart center p)

ensures that the title is vertically centered over the top line of the main box.
The macros that use this graphic combine some techniques of defining macros, using prede-
fined CONTEXT classes, and passing information to graphics.

\defineoverlay [FunnyFrame] [\useMPgraphic{FunnyFrame}]
\defineframedtext [FunnyText] [frame=0ff,background=FunnyFrame]

\def\StartFrame{\startFunnyText}
\def\StopFrame {\stopFunnyText }

\def\FrameTitle#1
{\setMPtext{FunnyFrame}{\hbox spread lem{\hss\strut#1\hss}}}

\setMPtext{FunnyFrame}{} % initialize the text variable

There is a little bit of low level TgX code involved, like a horizontal box (\hbox) that stretches one
em-space beyond its natural size (spread 1lem)with a centered text (two times \hss). Instead of
applying this spread, we could have enlarged the frame on both sides.

In the previous graphic we calculated the big rectangle taking the small one into account. This
was needed because we don’t use a background fill. The next definition does, so there we can use
a more straightforward approach by just drawing (and filling) the small rectangle on top of the
big one.

\startuseMPgraphic{FunnyFrame}
picture p ; numeric o ; path a, b ; pair c ;

p := textext.rt(\MPstring{FunnyFrame}) ;

a := unitsquare xyscaled(OverlayWidth,OverlayHeight) ;
o := BodyFontSize ;

p := p shifted (20,0verlayHeight-ypart center p) ;

drawoptions (withpen pencircle scaled 1pt withcolor .625red) ;
b := a randomized (0/2) ;
fill b withcolor .85white ; draw b ;

Graphics and macros nhanci

aQ

b := (boundingbox p) randomized (0/8) ;
fill b withcolor .85white ; draw b ;
draw p withcolor black;

setbounds currentpicture to a ;
\stopuseMPgraphic

__| Zapf (2) ,’7
There is not so much basic instruction, as of now, as there was in the

old days, showing the differences between good and bad typographic
design.

Because we use a random graphic, we cannot guarantee beforehand that the left and right edges
of the small shape touch the horizontal lines in a nice way. The next alternative displaces the small
shape plus text so that its center lays on the line. On the average, this looks better.

\startuseMPgraphic{FunnyFrame}
picture p ; numeric o ; path a, b ; pair c ;
p := textext.rt(\MPstring{FunnyFrame}) ;
a := unitsquare xyscaled(OverlayWidth,OverlayHeight) ;

o := BodyFontSize ;

p := p shifted (20,0verlayHeight-ypart center p) ;

drawoptions (withpen pencircle scaled 1pt withcolor .625red) ;
b := a randomized (o/2) ;

fill b withcolor .85white ; draw b ;

c := center p ;

c := b intersectionpoint (c shifted (0,-o0)--c shifted(0,0)) ;
p := p shifted (c-center p) ;

b := (boundingbox p) randomized (o/8) ;

fill b withcolor .85white ; draw b ;
draw p withcolor black;

setbounds currentpicture to a ;
\stopuseMPgraphic

There is not so much basic instruction, as of now, as there was in the
old days, showing the differences between good and bad typographic
design.

Yet another definition uses super ellipsed shapes instead of random ones. We need a high degree
of superness (.95) in order to make sure that the curves don't touch the texts.

\startuseMPgraphic{FunnyFrame}
picture p ; numeric o ; path a, b ; pair c ;
p := textext.rt(\MPstring{FunnyFrame}) ;
o := BodyFontSize ;
a := unitsquare xyscaled(OverlayWidth,OverlayHeight) ;
p := p shifted (20,0verlayHeight-ypart center p) ;
drawoptions (withpen pencircle scaled 1lpt withcolor .625red) ;

nh n1P1

aq

ellayo Graphics and macros

b := a superellipsed .95 ;

fill b withcolor .85white ; draw b ;

b := (boundingbox p) superellipsed .95 ;

fill b withcolor .85white ; draw b ;

draw p withcolor black ;

setbounds currentpicture to a ;
\stopuseMPgraphic

Many people are just fascinated by their PC’s tricks, and think that a
widely—praised program, called up on the screen, will make every-
thing automatic from now on.

There are quite some hard coded values in these graphics, like the linewidths, offsets and colors.
Some of these can be fetched from the \framed environment either by using TgX macros or
dimensions, or by using their MetaFun counterparts. In the following table we summarize both
the available METAPOST variables and their Tgx counterparts. They may be used interchangeably.

METAPOST variable TgX command meaning

OverlayWidth \overlaywidth current width
OverlayHeight \overlayheight current height
OverlayDepth \overlayheight current depth (often zero)
OverlayColor \MPcolor{\overlaycolor} background color
OverlayLineWidth \overlaylinewidth width of the frame
OverlayLineColor \MPcolor{} color of the frame
BaseLineSkip \the\baselineskip main line distance
LineHeight \the\baselineskip idem

BodyFontSize \the\bodyfontsize font size of the running text
StrutHeight \strutheight space above the baseline
StrutDepth \strutdepth space below the baseline
ExHeight lex height of an x

EmWidth lem width of an m-dash

\startuseMPgraphic{FunnyFrame}
picture p ; numeric o ; path a, b ; pair c ;
p := textext.rt(\MPstring{FunnyFrame}) ;
o := BodyFontSize ;
a := unitsquare xyscaled(OverlayWidth,OverlayHeight) ;
p := p shifted (20,0verlayHeight-ypart center p) ;
pickup pencircle scaled OverlayLineWidth ;
b := a superellipsed .95 ;
£ill b withcolor OverlayColor ;
draw b withcolor OverlayLineColor ;
b := (boundingbox p) superellipsed .95 ;
£fill b withcolor OverlayColor ;
draw b withcolor OverlayLineColor ;
draw p withcolor black ;

Graphics and macros hhan 1Fn

setbounds currentpicture to a ;
\stopuseMPgraphic

Many people arejust fascinated by their PC’s tricks, and think that a widely—praised program,
called up on the screen, will make everything automatic from now on.

We used the following command to pass the settings:

\setupframedtexts
[FunnyText]
[backgroundcolor=lightgray,
framecolor=darkred,
rulethickness=2pt,
offset=\bodyfontsize,
before={\blank[big,medium] },
after={\blank[big]l},
width=\textwidth]

In a real implementation, we should also take care of some additional spacing before the text,
which is why we have added more space before than after the framed text.

We demonstrated that when defining graphics that are part of the layout, you need to have
access to information known to the typesetting engine. Take figure 4.4. The line height needs
to match the font and the two thin horizontal lines should match the x-height. We also need
to position the baseline, being the lowest one of a pair of lines, in such a way that it suits the
proportions of the line as specified by the strut. A strut is an imaginary large character with no
width. You should be aware of the fact that while TX works its way top—down, in METRPOST the
origin is in the lower left corner.

\switchtobodyfont [lbr,hw] % lucida bright, handwriting

\startMPenvironment
\switchtobodyfont [1br,hw] % here too
\stopMPenvironment

\startMPpage

StartPage ;
path p ; numeric 1, n ; 1 := 1.5LineHeight ; n := 0 ;
p := origin shifted (1,0) -- origin shifted (PaperWidth-1,0) ;
for i=PaperHeight-1 step -1 until 1 :

n:=n+1;
drawoptions(withcolor .85white) ;
£ill p shifted (0,i+StrutHeight) --

reverse p shifted (0,i-StrutDepth) -- cycle ;
drawoptions(withpen pencircle scaled .25pt withcolor .5white) ;
draw p shifted (0,i) ; draw p shifted (0,i+ExHeight) ;
draw textext.origin("How are those penalty lines called in english?
I may not steal candies ..." & decimal n) shifted (1,i) ;
endfor ;

nk

aq

elayo Graphics and macros

Figure 4.4 Penalty lines.

StopPage ;
\stopMPpage

This code demonstrates the use of LineHeight, ExHeight, StrutHeight and StrutDepth. We
set the interline spacing to 1.5 so that we get a bit more loose layout. The variables mentioned are
set each time a graphic is processed and thereby match the current font settings.

Graphics and macros M

Graphics and macros

Positional graphics

5.1

In this chapter, we will explore some of the more advanced, but also conceptually more difficult,
graphic capabilities of CONTEXT. It took quite a few experiments to find the right way to support
these kind of graphics, and you can be sure that in due time extensions will show up. You can
skip this chapter if you are no CONTEXT user.

The concept

After TiX has read a paragraph of text, it will try to break this paragraph into lines. When this is
done, the result is flushed and after that, TgX will check if a page should be split off. As a result,
we can hardly predict how a document will come out. Therefore, when we want graphics to adapt
themselves to this text, we have to deal with this asynchronous feature of TgX in a rather advanced
way. Before we present one way of dealing with this complexity, we will elaborate on the nature
of such graphics.

When TiX entered the world of typesetting, desktop printers were not that common, let alone
color desktop printers. But times have changed and nowadays we want color and graphics, and,
if possible, we want them integrated in the text. To accomplish this several options are open:

1. Use abackend that acts on the typeset text. This is the traditional way, using specials to embed
directives in the DVI output file.

2. Use the power of a second language and pass snippets of code to the backend which takes
care of proper handling of those snippets of text. Impressive results are booked by passing
POSTSCRIPT to the DVI file.

3. Extend TgX in such a way that TX itself takes care of these issues. This is the way PDFTEX works.

The first method is rather limited, although for business graphics the results are acceptable. The
second method is very powerful but hardly portable, since it depends on the DVI to POSTSCRIPT
postprocessor. But what about the third method?

There has been some reluctance to divert from traditional Tex and DVI, but with the development
of PDFTpX, the third option becomes a viable option. Much of whatI will discuss here can be realized
in DVI, using a dedicated postprocessor to extract the information needed. Although we believe
that the PDFTEX way is the natural way to 80, CONTEXT also supports the same mechanism in DVI.

- =~

lines is a_dvnamic process The space between words is ﬂex1ble and we dan’t know in advance
when a d) or piece of a word —maybe it’s best to talk of typographlcmstead— will end
up on the page. It might even cross the page boundary.

In the previous paragraph word and iglobd are encircled and connected by an arrow. This
graphic can be drawn only when the position and dimensions are known. Unfortunately, this
information is only available after the paragraph is typeset and the best breakpoints are chosen.
Because the text must be laid on top of the graphic, the graphic must precede the first word in the
typeset stream or it must be positioned on a separate layer. In the latter case it can be calculated
directly after the paragraph is typeset, but in the former case a second pass is needed, Because
such graphics are not bound to one paragraph, the multi—pass option suits better because it gives
us more control: the more we know about he final state, the better we can act upon it. Think of

YT

The concept Positic

5.2

graphics on the first page that depend on the content of the last page ’01', as in this paragraph,
[backgrounds that depend on the typeset text.‘

It may be clear now that we need some positional information in order to provide features
like the ones shown here. The fact that we will act upon in a second pass simplifies the task,
although it forces us to store the positional information between runs in some place. This may
look uncomfortable at first sight, but it also enables us to store some additional information. Now
why is that needed?

A position has no dimensions, it’s just a place somewhere on the page. In order to do tricks like
those shown here, we also need to know the height and depth of lines at a specific point as well
as the width of the box(es) we're dealing with. In the encircled examples, the dimensions of the
box following the positional node are stored along with the position. In the background example,
we store the current height and depth of the strut (an imaginary character |with maximum height
and depth but no width) along with the current text width.

In order to process the graphics, we tag each point with a name, so that we can attach actions
to those points. In fact they become trigger points. As we will demonstrate, we also need to store
the current page number. This brings the data stored with a point to:

<identifier><pagenumber><x><y><width><height><depth>

The page number is needed in order to let the graphics engine determine boundary conditions.
Backgrounds like those shown here can span multiple pages. In order to calculate the right
backgrounds, some additional information must be available, like the top and bottom of the
current text area. In fact, these are just normal points that can be saved while processing the split
off page. So, apart from positioning anchors in the text we need anchors on crucial points of the
layout. This means that this kind of support cannot be fully integrated into the TX kernel, unless
we also add extensive support for layout definitions, and that is probably not what we want.

As soon as something (x, y) shows up, a logical question is where (0, 0) is located. Although
this is a valid question, the answer is less important than you may expect. Even if we know that
(0,0) is “officially” located in the bottom left corner of the page, the simple fact that in CONTEXT
we are dealing with a mixed page concept, like paper size and print paper size, or left and right
pages, forces us to think in relative positions instead of absolute ones. Therefore, graphics, even
those that involve multiple positions, are anchored to a position on the layer on which they are
located. The \MPanchor macro takes care of this.

Users who simply want to use these features may wonder why we go into so much detail. The
main reason is that in the end many users will want to go beyond the simple cases, and when
dealing with these issues, you must be aware not only of height, depth and width, but also of the
crossing of a page boundary, and the height and depth of lines. In some cases your graphics may
have to respond to layout characteristics, like differences between odd and even pages. Given that
unique identifiers are used for anchor points, in CONTEXT you can have access to all the information
needed.

m—————

Anchors and layers

In a previous section we saw that some @
most things in CONTEXT, marking these words i

words. This paragraph is keyed in as:

and connected by an . As with
from declaring what to"de“with those

i

hics Anchors and layers

In a previous section we saw that some \hpos {X-1} {words} were
\hpos {X-2} {circled} and connected by an \hpos {X-3} {arrow}.

As with most things in \CONTEXT, marking these words is separated
from declaring what to do with those words. This paragraph is keyed
in as:

We see three position anchors, each marked by an identifier: X-1, X-2 and X-3. Each of these
anchors can be associated with a (series) of graphic operations. Here we defined:

\setMPpositiongraphic{X-1}{mypos:arrow}{to=X-2}
\setMPpositiongraphic{X-2}{mypos:arrow}{to=X-3}

These examples clearly demonstrate that we cannot control to what extent graphics will cover text
and vise versa. A solution to this problem is using position overlays. We can define such an
overlay as follows:

\startpositionoverlay{backgraphics}
\setMPpositiongraphic{G-1}{mypos:circle}
\setMPpositiongraphic{G-2}{mypos:circle}
\setMPpositiongraphic{G-3}{mypos:circle}
\setMPpositiongraphic{G-4}{mypos:circle}

\stoppositionoverlay

\startpositionoverlay{foregraphics}
\setMPpositiongraphic{G-1}{mypos:1line}{to=G-2}
\setMPpositiongraphic{G-2}{mypos:1line}{to=G-3}
\setMPpositiongraphic{G-3}{mypos:1line}{to=G-4}

\stoppositionoverlay

First we have defined an
case, the _,..,g; efin [
Because they are located in the background, they don’t cover
previous paragraph was typeset by saying:

e are drawn as soon as the page overlay is typeset.
, while the lines do. The

E : erlay can be attached to some overlay layer, like, in our

First we have defined an \hpos {G-1} {overlayl}. This
overlay can be attached to some overlay layer, like, in our
case, the \hpos {G-2} {page}. We define four small \hpos
{G-3} {circles}. These are drawn as soon as the page
overlay is typeset. Because they are located in the
background, they don’t cover the \hpos {G-4} {text}, while
the lines do. The previous paragraph was typeset by saying:

As said, the circles are on the background layer, but the lines are not! They are positioned on top
of the text. This is a direct result of the definition of the page background:

\defineoverlay [foregraphics] [\positionoverlay{foregraphics}]
\defineoverlay [backgraphics] [\positionoverlay{backgraphics}]

\setupbackgrounds
[page]
[background={backgraphics,foreground, foregraphics}]

YT

Anchors and layers Positic

In this definition, the predefined overlay f oreground inserts the page data itself, so the foreground
graphics end up on top. This example also demonstrates that you should be well aware of the way
CONTgXT builds a page. There are six main layers, in some cases with sublayers. The body text
goes into the main text layer, which, unless forced otherwise, lays on top.

1. paper background 3. page backgrounds 5. logo areas
2. area backgrounds 4. text areas 6. main text

The paper background is used for special (sometimes internal) purposes. There are three page
backgrounds: left, right and both. The text areas, logo areas and backgrounds form a 5 X 5 matrix
with columns containing the leftedge, leftmargin, text, rightmargin, and rightedge. The rows of
the matrix contain the top, header, text, footer, and bottom. The main text is what you are reading
now.

Since the page background is applied last, the previous layers can considered to be the fore-
ground to the page background layer. And, indeed, it is available as an overlay under the name
foreground, as we already saw in the example. Foregrounds are available in most cases, but (for
the moment) not when we are dealing with the text area. Since anchoring the graphics is imple-
mented rather independent of the position of the graphics themselves, this is no real problem, we
can put them all on the page layer, if needed in separate overlays.

How is such a graphic defined? In fact these graphics are a special case of the already present
mechanism of including MeTAPOST graphics. The circles are defined as follows:

\startMPpositiongraphic{mypos:circle}
initialize_box (\MPpos{\MPvar{self}}) ;
path p ; p := llxy..lrxy..urxy..ulxy..cycle ;
pickup pencircle scaled 1pt ;
fill p withcolor .800white ;
draw p withcolor .625yellow ;
anchor_box (\MPanchor{\MPvar{self}}) ;
\stopMPpositiongraphic

Drawing the lines is handled in a similar fashion.

\startMPpositiongraphic{mypos:1line}
path pa, pb, pab ; numeric na, nb ;
initialize_box (\MPpos{\MPvar{from}}) ;
na := nxy ; pa := llxy..lrxy..urxy..ulxy..cycle ;
initialize_box (\MPpos{\MPvar{tol}}) ;
nb := nxy ; pb := llxy..lrxy..urxy..ulxy..cycle ;

if na=nb :
pab := center pa -- center pb ;
pab := pab cutbefore (pab intersectionpoint pa) ;

pab := pab cutafter (pab intersectionpoint pb) ;
pickup pencircle scaled 1pt ;
draw pab withcolor .625yellow ;
anchor_box (\MPanchor{\MPvar{from}}) ;
fi ;
\stopMPpositiongraphic

Jifl

hics Anchors and layers

5.3

The command \startMPpositiongraphic defines a graphic, in this example we have called it
mypos:circle.

The METAPOST macro initialize_box returns the characteristics of the box as identified by
\MPpos. After this call, the corners are available in 11xy, 1rxy, urxy and ulxy. The center is
defined by cxy and the path stored in pxy. When we are finished drawing the graphic, we can
anchor the result with anchor_box. This macro automatically handles positioning on specific
layers.

The position macro \MPpos returns the current characteristics of a position. The previously
defined G positions return:

position page x y width height depth

G-1 145 1827137pt 370.73187pt 31.93997pt 6.915pt 2.81999pt
G2 145 110.05482pt 357.5999pt 21.16998pt 4.735pt 2.81999pt
G3 145 22898412pt 357.5999pt 27.57999pt 6.915pt 0.15999pt
G-4 145 368.29483pt 344.46793pt 16.299%4pt 4.735pt 0.15999pt

The numbers represent the pagenumber p, the current position (x, y), and the dimensions of the
box (w, h,d) if known. These values are fed directly into MeTAPOST graphics but the individual
components can be asked for by \MPp, \MPx, \MPy, \MPw, \MPh and \MPd.

In the previous definition of the graphic, we saw another macro, \MPvar. When we invoke a
graphic or attach a graphic to a layer, we can pass variables. We can also set specific variables in
other ways, as we will see later.

\setMPpositiongraphic{G-1}{mypos:circle}
\setMPpositiongraphic{G-1}{mypos:line}{to=G-2}

In the second definition, we let the variable to point to another position. When needed, we can ask
for the value of to by \MPvar{to}. For reasons of convenience, the current position is assigned
automatically to from and self. This means that in the line we saw in the graphic:

initialize_box (\MPpos{\MPvar{self}}) ;

\MPvar{self} will return the current position, which, fed to \MPpos will return the list of
positional numbers. We already warned the reader: this is not an easy chapter.

More layers

Overlays are one of the nicer features of CONTEXT and even more nice things can be build on top
of them. Overlays are defined first and then assigned to framed boxes using the background
variable.

You can stack overlays, which is why they are called as such. You can use the special overlay
called foreground to move the topmost (often text) layer down in the stack.

background overlay a text, graphic, hyperlink or widget
position overlay a series of macros triggered by positions
background layer a box that can hold boxes with offsets

The last kind of layer can be used in other situations as well, but in most cases it will be hooked
into a background overlay.

More layers Positic

>raphics

’This goes to the backgroundI

\definelayer [MyLayer] [option=test]
\setupbackgrounds [text] [leftmargin] [background=MyLayer]

\setlayer [MyLayer] [x=.5cm,y=5cm]
{\rotate{\framed{This goes to the background}}}

In this case the framed text will be placed in the background of the (current) page with the given
offset to the topleft corner. Instead of a fixed position, you can inherit the current position using the
position directive. Say that we have a layer called YourLayer which we put in the background
of the text area.

\definelayer [YourLayer]
\setupbackgrounds [text] [text] [background=YourLayer]

We can now move some framed text to this layer using \setlayer with the directive position
set to yes.

here: \setlayer[YourLayer] [position=yes]{\inframed{Herel}}

here:

You can influence the placement by explicitly providing an offset (hoffset and/or voffset),
a position (x and/or y) or alocation directive (Location). Normally you will use the offsets for the
layer as a whole and the positions for individual contributions. The next example demonstrates
the use of a location directive.

here: \setlayer[YourLayer] [position=yes,location=c]{\inframed{Here}}

he

Many layers can be in use at the same time. In the next example we put something in the page
layer. By default, we turn on position tracking, which visualizes the bounding box of the content
and shows the reference point.

\definelayer [BackLayer] [position=yes]
\setupbackgrounds [page] [background=BackLayer]

Next we define an overlay that we can put behind for instance framed texts. We use METAPOST to
draw Shape.

\defineoverlay[Shape] [BackLayer] [\uniqueMPgraphic{Shapel}]

\startuniqueMPgraphic{Shape}
path p ; p := fullcircle xyscaled(OverlayWidth,OverlayHeight) ;
£ill p withcolor \MPcolor{lightgray} ;
draw p withpen pencircle scaled 1pt withcolor \MPcolor{darkred} ;
\stopuniqueMPgraphic

We can now put this background shape behind the running text, for instance with:

some \inframed[background=Shape]{text} with a frame ...
some \Shaped{text} with a frame ...

>raphics More layers

.... some tex with a frame ...
.... some @ with a frame ...
The \Shaped macro was defined as:

some \inframed[background=Shape]{text} with a frame ...
some \Shaped{text} with a frame ...

Watch how the graphics are moved to the background while the frame of the first text stays on
top, since it remains part of the text flow.

¥ N .
... some @ w%th a frame ...
... some (text) with a frame ...
In the previous instance of the example we have reversed the stacking. Reversal can be done with
the direction directive.

\setuplayer [BackLayer] [direction=reverse]
'You can influence the placement of a background component by using a different anchor point.

\setuplayer
[BackLayer]
[position=no,corner=bottom,height=\paperheight]

\setlayer [BackLayer] [x=11cm,y=6cm,location=bl]
{\externalfigure[somecow.pdf] [width=5cm]}

\setlayer [BackLayer] [x=12cm,y=5cm, location=br]
{\externalfigure [somecow.pdf] [width=5cm] }

\setlayer [BackLayer] [x= 8cm,y=8cm,location=t1]
{\externalfigure[somecow.pdf] [width=3cm]}

layer [BackLayer] [x= 9cm,y=7cm,location=tr]
ternalfigure[somecow.pdf] [width=4cm]}

} ext ends up on the page.
is/Way, you are in the final stage
Figure 5.1 of typesetting. You may qualify this as ing without actually using
a desktop.

ere on the page, but in the
I

\setlayer [BackLayer
[position=yes,loc
{\startMPcode

externalfigure "s
xscaled 100bp ys
\stopMPcode}

>raphics

More layers Positic

Instead of using relative positions, you can also use absolute ones. Of course you need to know,
how your coordinates relate to the rest of the layout definition.

\setuplayer
[BackLayer]
[position=no,corner=bottom,height=\paperheight]

\setlayer [BackLayer] [x=8cm,y=7cm,location=bl]
{\externalfigure[somecow.pdf] [width=5cm]}

\setlayer [BackLayer] [x=8cm,y=7cm, location=br]
{\externalfigure[somecow.pdf] [width=5cm] }

\setlayer [BackLayer] [x=8cm,y=7cm,location=t1]
{\externalfigure[somecow.pdf] [width=3cm]}

\setlayer [BackLayer] [x=8cm,y=7cm,location=tr]
{\externalfigure[somecow.pdf] [width=4cm]}

\setlayer [BackLayer] [x=8cm,y=7cm,location=c]
{\externalfigure [somecow.pdf] [width=5cm] }

These examples again demonstrate how we can influence the placement by assigning an anchor|
point to position. Here we also put the reference point in the lower left corner (bottom). This
mechanism only works when we also height.

Pali

hics More layers

~

The previous example also demonstrated the use of METAPOST for rotating
the picture. The \MPfigure macro encapsulates the code in a shortcut. You
can achieve special effects by using the layers behind floating bodies and
alike, but always keep in mind that the readability of the text should not be
violated too much.

\setlayer [BackLayer] Figure 5.2
[position=yes,voffset=-1.5cm,width=3cm,height=2cm]
{\MPfigure{somecow.pdf}{scaled .5 slanted .5}}

We have already seen a lot of parameters that can be used to control the content of a layer. There
are a few more. General housekeeping takes place with:

state start enable the layer
stop disable the layer
position mno use absolute positions
yes use relative positions

overlay idem, butignore the size
direction mnormal putnew data on top
reverse putnew data below old data

Sometimes all data needs to be offset in a similar way. You can use both offset parameters for that.

hoffset an additional horizontal displacement
voffset an additional vertical displacement

You can position data anywhere in the layer. When positioning is turned on, the current position
will get a placeholder. You can change the dimensions of that placeholder (when position is set
to overlay), zero dimensions are used.

X the horizontal displacement
y the vertical displacement
width the (non natural) width

height the (non natural) height
location 1 r t b c 1t 1b rt rb

The location directive determines what point of the data is used as reference point. You can
keep track of this point and the placement when you enable test mode. This is how the rectangles
in the previous examples where drawn.

option test show positioning information

When you are enhancing the final version of a document, you can explicitly specify on what page
the data will go. Use this option with care.”

page the page where the data will go

Soon, this feature will be hooked into the named pages handler.

YT

More layers Positic

Because layers can migrate to other pages, they may disappear due to the background not being
recalculated. In case of doubt, you can force repetitive background calculation by:*®

\setupbackgrounds [state=repeat]

54 Complex text in graphics

If you like to embed METAPOST snippets in CONTEXT, you may want to combine text and graphics
and let METAPOST provide the position and the dimensions of the text to be typeset outside the
METAPOST run. For most applications using the MetaFun textext macro works well enough, but
when the typeset text needs to communicate with the typesetting engine, for instance because it
contains hyperlinks or references, you can use the following method:

define a layer

define a (reusable) graphic

put your text into the layer
combine the graphic with the text

You must be aware of the fact that when the layer is flushed, its content is gone. You can take
advantage of this by using the same graphic with multiple texts.

\definelayer [test]

You don’t need to pass the width and height explicitly, but when you do so, you have access to
them later.

\startuseMPgraphic{oeps}
path p ; p := fullcircle scaled 6cm ;
fill p withcolor .8white ;
draw p withpen pencircle scaled 1lmm withcolor .625red ;
register ("somepos-1",0Ocm,Ocm,center currentpicture) ;
register ("somepos-2",3cm,lcm,(-1lcm,-1cm)) ;
register ("somepos-3",2cm,Ocm, (-2cm,2cm)) ;
\stopuseMPgraphic

The MetaFun register macro takes the following arguments:
register ("tag",width,height,(x offset,y offset)) ;

The width and height are available in the macros \MPlayerwidth and \MPlayerheight and are
equivalent to \MPw{tag} and \MPh{tag},

\setMPlayer [test] [somepos-1] [location=c]
{Does it work al right?}

\setMPlayer [test] [somepos-2]
{\framed
[width=\MPlayerwidth,height=\MPlayerheight,

8 This will be default behaviour when computers become faster.

10nal graphics Complex text in graphics

background=color,backgroundcolor=white]
{It Works!}}

\setMPlayer [test] [somepos-3]
{\externalfigure[cow.mps] [width=2cm] }

Combining the graphic and the text is handled by the macro \getMPlayer.

\getMPlayer [test] {\useMPgraphic{oeps}}

1 A

W

Does it work al right?

It Works!

The macro \getMPlayer is built on top of \framed. The settings passed in the (optional) second

argument are the same as those to \framed.

\getMPlayer
[test]
[frame=on,offset=5pt]
{\useMPgraphic{oeps}}

As you see, you need a bit twisted mind to handle graphics this way, but at least the functionality

is there to create complex graphics in a declarative way.

Complex text in graphics

1C

>raphics

95)
2
<

o

5

-

50
&
z

%

[}

g

"
e

g

5)
)

Page backgrounds

6.1

Especially in interactive documents, adding backgrounds to the page and text areas not only
enhances readability, but also makes it more convenient to identify header, footers and navigational
areas. In this chapter we will demonstrate that with METAPOST we can go beyond the TpX based
features present in CONTEXT. One section is dedicated to graphics and printing, especially bleeding.

The basic layout

In the CONTEXT manual you can find many details on the composition of the page. When T
typesets text, crossing the page boundary triggers TgX’s output routine. This routine is responsible
for pasting the body text that goes onto a page into the correct area. A simple representation of
such a page is:

The red areas are the header and footer, while the yellow areas contains the text flow. We can turn
headers on and off and/or hide them. For this reason, the header, text and footer areas together
make up the height of the text.

A close look at the left picture will reveal that the two arrows point to the center of the lines.
This is achieved by the top and 1ft directives. If we would not have clipped the picture, the
arrow would have stuck half a line width outside the gray area that represents the page. When
constructing such pictures, one should really pay attention to such details, since it pays off in the
overall look and feel of the document.

The vertical arrow represents the top space, while the horizontal arrow denotes the distance
to the back of the cover (back space). By changing their values, you can shift the main body text
on the page. In a double sided layout scheme, the back space is automatically mirrored on even
pages.

Since we want to teach a bit of METAPOST now and then, we will also show how these graphics
were drawn. An advanced METAPOST user may wonder why we hard code the dimensions, and

The basic layout i; ge g

b

©

avoid METAPOST’s powerful mechanisms for defining relations. Our experience has taught us that
in pictures like this, providing a general solution seldom pays large dividents or savings in time.

\startuseMPgraphic{layout 1}

pickup pencircle scaled 1mm ;

fill unitsquare xyscaled (7cm,8cm)
withcolor .85white ;

fill unitsquare xyscaled (5cm,5cm) shifted (lcm,1.5cm)
withcolor .62byellow ;

f£ill unitsquare xyscaled (5cm,lcm) shifted (lcm,.5cm)
withcolor .625red ;

fill unitsquare xyscaled (5cm,lcm) shifted (lcm,6.5cm)
withcolor .625red ;

draw unitsquare xyscaled (5cm,7cm) shifted (lcm,.5cm)
withcolor .25white ;

drawarrow (2cm,8cm) -- top (2cm,7.5cm) ;

drawarrow (Ocm,7cm) -- 1ft (lcm,7cm) ;

clip currentpicture to unitsquare xyscaled (7cm,8cm) ;
\stopuseMPgraphic

As you can see, the left graphic is defined as a series of rectangles. The xyscaled macro is part of
the CONTXT files, and saves some typing and space. It is defined as a primary, requiring both left
and right operands.

primarydef p xyscaled q =
p xscaled (xpart q) yscaled (ypart q)
enddef ;

Zooming in on the top left corner only takes a few lines. First we clip the correct part, next we
scale it up, and finally we let the bounding box suit the left picture.

\startuseMPgraphic{layout 2}
\includeMPgraphic{layout 1}
clip currentpicture to unitsquare scaled 3cm shifted (0,5cm) ;
currentpicture := currentpicture scaled 2 shi