Easy-to-use and general-purpose machine learning in Python
scikits.learn is a Python module integrating classique machine learning algorithms in the tightly-nit world of scientific Python packages (numpy, scipy, matplotlib).
It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in various contexts: machine-learning as a versatile tool for science and engineering.
A simple Example: recognizing hand-written digits
import pylab as pl
from scikits.learn import datasets, svm
digits = datasets.load_digits()
for index, (image, label) in enumerate(zip(digits.images, digits.target)[:4]):
pl.subplot(2, 4, index+1)
pl.imshow(image, cmap=pl.cm.gray_r)
pl.title('Training: %i' % label)
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))
classifier = svm.SVC()
classifier.fit(data[:n_samples/2], digits.target[:n_samples/2])
for index, image in enumerate(digits.images[n_samples/2:n_samples/2+4]):
pl.subplot(2, 4, index+5)
pl.imshow(image, cmap=pl.cm.gray_r)
pl.title('Prediction: %i' % classifier.predict(image.ravel()))
Features:
- Solid: supervised learning: classification, regression
- Work in progress: unsupervised learning: clustering, mixture modeling, manifold learning
- Planed: Gaussian graphical models, matrix factorization, ICA
Click here to download latest release. Previous releases can also be found in that directory.
Visit this page to subscribe to the mailing list and keep informed about scikit-learn development